一、凸包及其概念
凸包(Convex Hull)是计算几何中的一个重要概念。在一个实数向量空间中,对于给定的点集,凸包是指包含这些点的最小凸多边形。在二维平面上,凸包可以形象地理解为用一个橡皮圈将所有点紧紧包裹起来,橡皮圈最终形成的形状就是凸包。
二、Graham Scan算法原理
Graham Scan算法是一种高效的凸包求解算法,其时间复杂度为 (O(n \log n))。其核心思想是通过极角排序和栈操作来逐步构建凸包。具体步骤如下:
- 寻找基准点:在所有点中找到纵坐标最小的点,若纵坐标相同,则取横坐标最小的点,记为基准点 ( p_0 )。该点一定在凸包上。
- 极角排序:将除基准点外的其他点按照与基准点的极角进行排序。极角是指从基准点出发,逆时针旋转到目标点的角度。若极角相同,则按距离基准点的远近排序。
- 构建凸包:使用栈来构建凸包。先将基准点和排序后的第一个点入栈。然后依次处理排序后的每个点,对于当前点,检查其与栈顶两个点形成的向量方向。如果形成的是左转(逆时针),则将当前点入栈;如果是右转(顺时针),则弹出栈顶点,继续检查,直到形成左转或栈中只剩一个点。
三、代码实现
以下是使用C++实现的Graham Scan算法代码:
#include <iostream>
#include <stack>
#include <stdlib.h>
using namespace std;
struct Point {
int x, y;
};
// A global point needed for sorting points with reference
// to the first point. Used in compare function of qsort()
Point p0;
// A utility function to find next to top in a stack
Point nextToTop(stack<Point> &S) {
Point p = S.top();
S.pop();
Point res = S.top();
S.push(p);
return res;
}
// A utility function to swap two points
void swap(Point &p1, Point &p2) {
Point temp = p1;
p1 = p2;
p2 = temp;
}
// A utility function to return square of distance
// between p1 and p2
int distSq(Point p1, Point p2) {
return (p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y);
}
// To find orientation of ordered triplet (p, q, r).
// The function returns following values
// 0 --> p, q and r are collinear
// 1 --> Clockwise
// 2 --> Counterclockwise
int orientation(Point p, Point q, Point r) {
int val = (q.y - p.y) * (r.x - q.x) - (q.x - p.x) * (r.y - q.y);
if (val == 0) return 0; // collinear
return (val > 0) ? 1 : 2; // clock or counterclock wise
}
// A function used by library function qsort() to sort an array of
// points with respect to the first point
int compare(const void *vp1, const void *vp2) {
Point *p1 = (Point *)vp1;
Point *p2 = (Point *)vp2;
// Find orientation
int o = orientation(p0, *p1, *p2);
if (o == 0)
return (distSq(p0, *p2) >= distSq(p0, *p1)) ? -1 : 1;
return (o == 2) ? -1 : 1;
}
// Prints convex hull of a set of n points.
void convexHull(Point points[], int n) {
// Find the bottommost point
int ymin = points[0].y, min = 0;
for (int i = 1; i < n; i++) {
int y = points[i].y;
// Pick the bottom-most or choose the left
// most point in case of tie
if ((y < ymin) || (ymin == y && points[i].x < points[min].x)) {
ymin = points[i].y;
min = i;
}
}
// Place the bottom-most point at first position
swap(points[0], points[min]);
// Sort n-1 points with respect to the first point.
// A point p1 comes before p2 in sorted output if p2
// has larger polar angle (in counterclockwise
// direction) than p1
p0 = points[0];
qsort(&points[1], n - 1, sizeof(Point), compare);
// If two or more points make same angle with p0,
// Remove all but the one that is farthest from p0
// Remember that, in above sorting, our criteria was
// to keep the farthest point at the end when more than
// one points have same angle.
int m = 1; // Initialize size of modified array
for (int i = 1; i < n; i++) {
// Keep removing i while angle of i and i+1 is same
// with respect to p0
while (i < n - 1 && orientation(p0, points[i], points[i + 1]) == 0)
i++;
points[m] = points[i];
m++; // Update size of modified array
}
// If modified array of points has less than 3 points,
// convex hull is not possible
if (m < 3) return;
// Create an empty stack and push first three points
// to it.
stack<Point> S;
S.push(points[0]);
S.push(points[1]);
S.push(points[2]);
// Process remaining n-3 points
for (int i = 3; i < m; i++) {
// Keep removing top while the angle formed by
// points next-to-top, top, and points[i] makes
// a non-left turn
while (S.size() > 1 && orientation(nextToTop(S), S.top(), points[i]) != 2)
S.pop();
S.push(points[i]);
}
// Now stack has the output points, print contents of stack
while (!S.empty()) {
Point p = S.top();
cout << "(" << p.x << ", " << p.y << ")" << endl;
S.pop();
}
}
// Driver program to test above functions
int main() {
Point points[] = {{0, 3}, {1, 1}, {2, 2}, {4, 4}, {0, 0}, {1, 2}, {3, 1}, {3, 3}};
int n = sizeof(points) / sizeof(points[0]);
convexHull(points, n);
return 0;
}
四、总结
Graham Scan算法是一种经典的计算几何算法,用于求解二维平面上点集的凸包。它通过极角排序和栈操作,高效地构建凸包,时间复杂度为 O ( n log n ) O(n \log n) O(nlogn)。该算法在计算机图形学、图像处理、碰撞检测等领域有广泛的应用。