Python训练营---DAY52

发布于:2025-06-13 ⋅ 阅读:(24) ⋅ 点赞:(0)

DAY 52 神经网络调参指南

知识点回顾:

  1. 随机种子
  2. 内参的初始化
  3. 神经网络调参指南
    1. 参数的分类
    2. 调参的顺序
    3. 各部分参数的调整心得

作业:对于day'41的简单cnn,看看是否可以借助调参指南进一步提高精度。

对于day41的CNN进行调参:

早停类:

# 早停类
class EarlyStopping:
    """如果验证损失在给定轮数内没有改善,则提前停止训练"""
    def __init__(self, patience=7, verbose=False, delta=0):
        """
        参数:
            patience (int): 在最后一次验证损失改善后等待的轮数
                            默认: 7
            verbose (bool): 如果为True,每次验证损失改善时打印消息
                            默认: False
            delta (float): 监控指标的最小变化,以视为改善
                            默认: 0
        """
        self.patience = patience
        self.verbose = verbose
        self.counter = 0 # 记录验证损失未改善的连续轮数
        self.best_score = None  # 记录历史最佳分数(通常是负的验证损失,因为我们希望最大化这个值)
        self.early_stop = False  # 触发早停的标志
        self.val_loss_min = np.Inf  # 记录历史最低验证损失
        self.delta = delta  # 改善阈值

    def __call__(self, val_loss, model):
        score = val_loss

        if self.best_score is None:
            self.best_score = score
            self.save_checkpoint(val_loss, model)
        elif score < self.best_score + self.delta:
            self.counter += 1
            print(f'早停计数器: {self.counter} / {self.patience}')
            if self.counter >= self.patience:
                self.early_stop = True
        else:
            self.best_score = score
            self.save_checkpoint(val_loss, model)
            self.counter = 0

    def save_checkpoint(self, val_loss, model):
        '''当验证损失降低时保存模型'''
        if self.verbose:
            print(f'测试集损失降低 ({self.val_loss_min:.6f} --> {val_loss:.6f})')
        # torch.save(model.state_dict(), 'checkpoint.pth')
        self.val_loss_min = val_loss

测试最大允许的 batch size 函数

def find_max_batch_size(train_dataset, device, model):
    max_batch_size = 512
    try:
        train_loader = DataLoader(train_dataset, batch_size=max_batch_size, shuffle=True)
        for data, target in train_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            break
    except RuntimeError as e:
        print(f"最大 batch size 导致显存不足,尝试减小")
        while True:
            max_batch_size //= 2
            try:
                train_loader = DataLoader(train_dataset, batch_size=max_batch_size, shuffle=True)
                for data, target in train_loader:
                    data, target = data.to(device), target.to(device)
                    output = model(data)
                print(f"最大允许的 batch size 为 {max_batch_size}")
                break
            except RuntimeError:
                continue
    return max_batch_size

配置优化器和学习率调度器函数

# 配置优化器和学习率调度器函数
def configure_optimizer_scheduler(model):
    criterion = nn.CrossEntropyLoss()
    # 设置 weight_decay 参数添加 L2 正则化
    optimizer = optim.Adam(model.parameters(), lr=0.001, weight_decay=0.0001) 
    scheduler = ReduceLROnPlateau(optimizer, 'min', patience=3, factor=0.5)
    return criterion, optimizer, scheduler

完整代码:

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import numpy as np
from torch.optim.lr_scheduler import ReduceLROnPlateau  # 添加这行

# 设置替代中文字体(适用于Linux)
plt.rcParams["font.family"] = ["WenQuanYi Micro Hei", "sans-serif"]
plt.rcParams['axes.unicode_minus'] = False

# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")

# 1. 数据预处理
# 训练集:使用多种数据增强方法提高模型泛化能力
train_transform = transforms.Compose([
    # 随机裁剪图像,从原图中随机截取32x32大小的区域
    transforms.RandomCrop(32, padding=4),
    # 随机水平翻转图像(概率0.5)
    transforms.RandomHorizontalFlip(),
    # 随机颜色抖动:亮度、对比度、饱和度和色调随机变化
    transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),
    # 随机旋转图像(最大角度15度)
    transforms.RandomRotation(15),
    # 将PIL图像或numpy数组转换为张量
    transforms.ToTensor(),
    # 标准化处理:每个通道的均值和标准差,使数据分布更合理
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])

# 测试集:仅进行必要的标准化,保持数据原始特性,标准化不损失数据信息,可还原
test_transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])

# 2. 加载CIFAR-10数据集
train_dataset = datasets.CIFAR10(
    root='./cifar_data/cifar_data',
    train=True,
    download=True,
    transform=train_transform  # 使用增强后的预处理
)

test_dataset = datasets.CIFAR10(
    root='./cifar_data/cifar_data',
    train=False,
    transform=test_transform  # 测试集不使用增强
)


# 4. 定义CNN模型的定义(替代原MLP)
class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()  # 继承父类初始化
        
        # ---------------------- 第一个卷积块 ----------------------
        # 卷积层1:输入3通道(RGB),输出32个特征图,卷积核3x3,边缘填充1像素
        self.conv1 = nn.Conv2d(
            in_channels=3,       # 输入通道数(图像的RGB通道)
            out_channels=32,     # 输出通道数(生成32个新特征图)
            kernel_size=3,       # 卷积核尺寸(3x3像素)
            padding=1            # 边缘填充1像素,保持输出尺寸与输入相同
        )
        # 批量归一化层:对32个输出通道进行归一化,加速训练
        self.bn1 = nn.BatchNorm2d(num_features=32)
        # ReLU激活函数:引入非线性,公式:max(0, x)
        self.relu1 = nn.ReLU()
        # 最大池化层:窗口2x2,步长2,特征图尺寸减半(32x32→16x16)
        self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)  # stride默认等于kernel_size
        
        # ---------------------- 第二个卷积块 ----------------------
        # 卷积层2:输入32通道(来自conv1的输出),输出64通道
        self.conv2 = nn.Conv2d(
            in_channels=32,      # 输入通道数(前一层的输出通道数)
            out_channels=64,     # 输出通道数(特征图数量翻倍)
            kernel_size=3,       # 卷积核尺寸不变
            padding=1            # 保持尺寸:16x16→16x16(卷积后)→8x8(池化后)
        )
        self.bn2 = nn.BatchNorm2d(num_features=64)
        self.relu2 = nn.ReLU()
        self.pool2 = nn.MaxPool2d(kernel_size=2)  # 尺寸减半:16x16→8x8
        
        # ---------------------- 第三个卷积块 ----------------------
        # 卷积层3:输入64通道,输出128通道
        self.conv3 = nn.Conv2d(
            in_channels=64,      # 输入通道数(前一层的输出通道数)
            out_channels=128,    # 输出通道数(特征图数量再次翻倍)
            kernel_size=3,
            padding=1            # 保持尺寸:8x8→8x8(卷积后)→4x4(池化后)
        )
        self.bn3 = nn.BatchNorm2d(num_features=128)
        self.relu3 = nn.ReLU()  # 复用激活函数对象(节省内存)
        self.pool3 = nn.MaxPool2d(kernel_size=2)  # 尺寸减半:8x8→4x4
        
        # ---------------------- 全连接层(分类器) ----------------------
        # 计算展平后的特征维度:128通道 × 4x4尺寸 = 128×16=2048维
        self.fc1 = nn.Linear(
            in_features=128 * 4 * 4,  # 输入维度(卷积层输出的特征数)
            out_features=512          # 输出维度(隐藏层神经元数)
        )
        # Dropout层:训练时随机丢弃50%神经元,防止过拟合
        self.dropout = nn.Dropout(p=0.5)
        # 输出层:将512维特征映射到10个类别(CIFAR-10的类别数)
        self.fc2 = nn.Linear(in_features=512, out_features=10)

    def forward(self, x):
        # 输入尺寸:[batch_size, 3, 32, 32](batch_size=批量大小,3=通道数,32x32=图像尺寸)
        
        # ---------- 卷积块1处理 ----------
        x = self.conv1(x)       # 卷积后尺寸:[batch_size, 32, 32, 32](padding=1保持尺寸)
        x = self.bn1(x)         # 批量归一化,不改变尺寸
        x = self.relu1(x)       # 激活函数,不改变尺寸
        x = self.pool1(x)       # 池化后尺寸:[batch_size, 32, 16, 16](32→16是因为池化窗口2x2)
        
        # ---------- 卷积块2处理 ----------
        x = self.conv2(x)       # 卷积后尺寸:[batch_size, 64, 16, 16](padding=1保持尺寸)
        x = self.bn2(x)
        x = self.relu2(x)
        x = self.pool2(x)       # 池化后尺寸:[batch_size, 64, 8, 8]
        
        # ---------- 卷积块3处理 ----------
        x = self.conv3(x)       # 卷积后尺寸:[batch_size, 128, 8, 8](padding=1保持尺寸)
        x = self.bn3(x)
        x = self.relu3(x)
        x = self.pool3(x)       # 池化后尺寸:[batch_size, 128, 4, 4]
        
        # ---------- 展平与全连接层 ----------
        # 将多维特征图展平为一维向量:[batch_size, 128*4*4] = [batch_size, 2048]
        x = x.view(-1, 128 * 4 * 4)  # -1自动计算批量维度,保持批量大小不变
        
        x = self.fc1(x)           # 全连接层:2048→512,尺寸变为[batch_size, 512]
        x = self.relu3(x)         # 激活函数(复用relu3,与卷积块3共用)
        x = self.dropout(x)       # Dropout随机丢弃神经元,不改变尺寸
        x = self.fc2(x)           # 全连接层:512→10,尺寸变为[batch_size, 10](未激活,直接输出logits)
        
        return x  # 输出未经过Softmax的logits,适用于交叉熵损失函数

# 早停类
class EarlyStopping:
    """如果验证损失在给定轮数内没有改善,则提前停止训练"""
    def __init__(self, patience=7, verbose=False, delta=0):
        """
        参数:
            patience (int): 在最后一次验证损失改善后等待的轮数
                            默认: 7
            verbose (bool): 如果为True,每次验证损失改善时打印消息
                            默认: False
            delta (float): 监控指标的最小变化,以视为改善
                            默认: 0
        """
        self.patience = patience
        self.verbose = verbose
        self.counter = 0 # 记录验证损失未改善的连续轮数
        self.best_score = None  # 记录历史最佳分数(通常是负的验证损失,因为我们希望最大化这个值)
        self.early_stop = False  # 触发早停的标志
        self.val_loss_min = np.Inf  # 记录历史最低验证损失
        self.delta = delta  # 改善阈值

    def __call__(self, val_loss, model):
        score = val_loss

        if self.best_score is None:
            self.best_score = score
            self.save_checkpoint(val_loss, model)
        elif score < self.best_score + self.delta:
            self.counter += 1
            print(f'早停计数器: {self.counter} / {self.patience}')
            if self.counter >= self.patience:
                self.early_stop = True
        else:
            self.best_score = score
            self.save_checkpoint(val_loss, model)
            self.counter = 0

    def save_checkpoint(self, val_loss, model):
        '''当验证损失降低时保存模型'''
        if self.verbose:
            print(f'测试集损失降低 ({self.val_loss_min:.6f} --> {val_loss:.6f})')
        # torch.save(model.state_dict(), 'checkpoint.pth')
        self.val_loss_min = val_loss


# 2. 测试最大允许的 batch size 函数
def find_max_batch_size(train_dataset, device, model):
    max_batch_size = 512
    try:
        train_loader = DataLoader(train_dataset, batch_size=max_batch_size, shuffle=True)
        for data, target in train_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            break
    except RuntimeError as e:
        print(f"最大 batch size 导致显存不足,尝试减小")
        while True:
            max_batch_size //= 2
            try:
                train_loader = DataLoader(train_dataset, batch_size=max_batch_size, shuffle=True)
                for data, target in train_loader:
                    data, target = data.to(device), target.to(device)
                    output = model(data)
                print(f"最大允许的 batch size 为 {max_batch_size}")
                break
            except RuntimeError:
                continue
    return max_batch_size

# 配置优化器和学习率调度器函数
def configure_optimizer_scheduler(model):
    criterion = nn.CrossEntropyLoss()
    # 设置 weight_decay 参数添加 L2 正则化
    optimizer = optim.Adam(model.parameters(), lr=0.001, weight_decay=0.0001) 
    scheduler = ReduceLROnPlateau(optimizer, 'min', patience=3, factor=0.5)
    return criterion, optimizer, scheduler

# 初始化模型
model = CNN()
model = model.to(device)  # 将模型移至GPU(如果可用)


# 5. 训练模型(记录每个 iteration 的损失)
def train(model, train_dataset, test_dataset, device, epochs):
    model.train()  # 设置为训练模式
    
    max_batch_size = find_max_batch_size(train_dataset, device, model)
    criterion, optimizer, scheduler = configure_optimizer_scheduler(model)
    early_stopping = EarlyStopping(patience=5, verbose=True)

    train_loader = DataLoader(train_dataset, batch_size=max_batch_size, shuffle=True)
    test_loader = DataLoader(test_dataset, batch_size=max_batch_size, shuffle=False)
    
    # 记录每个 iteration 的损失
    all_iter_losses = []  # 存储所有 batch 的损失
    iter_indices = []     # 存储 iteration 序号
    
    # 记录每个 epoch 的准确率和损失
    train_acc_history = []
    test_acc_history = []
    train_loss_history = []
    test_loss_history = []
    
    for epoch in range(epochs):
        running_loss = 0.0
        correct = 0
        total = 0
        
        for batch_idx, (data, target) in enumerate(train_loader):
            data, target = data.to(device), target.to(device)  # 移至GPU
            
            optimizer.zero_grad()  # 梯度清零
            output = model(data)  # 前向传播
            loss = criterion(output, target)  # 计算损失
            loss.backward()  # 反向传播
            optimizer.step()  # 更新参数
            
            # 记录当前 iteration 的损失
            iter_loss = loss.item()
            all_iter_losses.append(iter_loss)
            iter_indices.append(epoch * len(train_loader) + batch_idx + 1)
            
            # 统计准确率和损失
            running_loss += iter_loss
            _, predicted = output.max(1)
            total += target.size(0)
            correct += predicted.eq(target).sum().item()
            
            # 每100个批次打印一次训练信息
            if (batch_idx + 1) % 100 == 0:
                print(f'Epoch: {epoch+1}/{epochs} | Batch: {batch_idx+1}/{len(train_loader)} '
                      f'| 单Batch损失: {iter_loss:.4f} | 累计平均损失: {running_loss/(batch_idx+1):.4f}')
        
        # 计算当前epoch的平均训练损失和准确率
        epoch_train_loss = running_loss / len(train_loader)
        epoch_train_acc = 100. * correct / total
        train_acc_history.append(epoch_train_acc)
        train_loss_history.append(epoch_train_loss)
        
        # 测试阶段
        model.eval()  # 设置为评估模式
        test_loss = 0
        correct_test = 0
        total_test = 0
        
        with torch.no_grad():
            for data, target in test_loader:
                data, target = data.to(device), target.to(device)
                output = model(data)
                test_loss += criterion(output, target).item()
                _, predicted = output.max(1)
                total_test += target.size(0)
                correct_test += predicted.eq(target).sum().item()
        
        epoch_test_loss = test_loss / len(test_loader)
        epoch_test_acc = 100. * correct_test / total_test
        test_acc_history.append(epoch_test_acc)
        test_loss_history.append(epoch_test_loss)
        
        # 更新学习率调度器
        scheduler.step(epoch_test_loss)

        # 早停检查
        early_stopping(epoch_test_acc, model)
        if early_stopping.early_stop:
            print("早停触发,停止训练。")
            break
        
        print(f'Epoch {epoch+1}/{epochs} 完成 | 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%')
    
    # 绘制所有 iteration 的损失曲线
    plot_iter_losses(all_iter_losses, iter_indices)
    
    # 绘制每个 epoch 的准确率和损失曲线
    plot_epoch_metrics(train_acc_history, test_acc_history, train_loss_history, test_loss_history)
    
    return epoch_test_acc  # 返回最终测试准确率

# 6. 绘制每个 iteration 的损失曲线
def plot_iter_losses(losses, indices):
    plt.figure(figsize=(10, 4))
    plt.plot(indices, losses, 'b-', alpha=0.7, label='Iteration Loss')
    plt.xlabel('Iteration(Batch序号)')
    plt.ylabel('损失值')
    plt.title('每个 Iteration 的训练损失')
    plt.legend()
    plt.grid(True)
    plt.tight_layout()
    plt.show()

# 7. 绘制每个 epoch 的准确率和损失曲线
def plot_epoch_metrics(train_acc, test_acc, train_loss, test_loss):
    epochs = range(1, len(train_acc) + 1)
    
    plt.figure(figsize=(12, 4))
    
    # 绘制准确率曲线
    plt.subplot(1, 2, 1)
    plt.plot(epochs, train_acc, 'b-', label='训练准确率')
    plt.plot(epochs, test_acc, 'r-', label='测试准确率')
    plt.xlabel('Epoch')
    plt.ylabel('准确率 (%)')
    plt.title('训练和测试准确率')
    plt.legend()
    plt.grid(True)
    
    # 绘制损失曲线
    plt.subplot(1, 2, 2)
    plt.plot(epochs, train_loss, 'b-', label='训练损失')
    plt.plot(epochs, test_loss, 'r-', label='测试损失')
    plt.xlabel('Epoch')
    plt.ylabel('损失值')
    plt.title('训练和测试损失')
    plt.legend()
    plt.grid(True)
    
    plt.tight_layout()
    plt.show()
# 8. 执行训练和测试
epochs = 30  # 增加训练轮次以获得更好效果
print("开始使用CNN训练模型...")
final_accuracy = train(model, train_dataset, test_dataset, device, epochs)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")

测试集准确率最好为80.44%,跟day41相差不是很大