文章目录
线性代数知识整理
一、求行列式
1、 套公式
(1)二阶、三阶行列式
∣ 1 4 5 2 ∣ \left|\begin {array}{c} 1 &4 \\ 5 &2 \\ \end{array}\right| 1542 = 1 * 2 - 4 * 5 = -18
∣ 1 2 3 4 5 6 7 8 9 ∣ \left|\begin {array}{c} 1 &2 &3 \\ 4 &5 &6 \\ 7 &8 &9 \\ \end{array}\right| 147258369 = 1 * 5 * 9 + 2 * 6 * 7 + 3 * 4 * 8 - 3 * 5 * 7 - 2 * 4 * 9 - 1 * 6 * 8 = 0
(2) 三角行列式
主对角线行列式
∣ a 11 a 12 … a 1 n 0 a 22 … a 2 n ⋮ ⋮ ⋱ ⋮ 0 0 … a n n ∣ \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn} \end{vmatrix} a110⋮0a12a22⋮0……⋱…a1na2n⋮ann = ∣ a 11 0 … 0 a 21 a 22 … 0 ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 … a n n ∣ \begin{vmatrix} a_{11} & 0 & \dots & 0 \\ a_{21} & a_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} a11a21⋮an10a22⋮an2……⋱…00⋮ann = ∣ a 11 0 … 0 0 a 22 … 0 ⋮ ⋮ ⋱ ⋮ 0 0 … a n n ∣ \begin{vmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn} \end{vmatrix} a110⋮00a22⋮0……⋱…00⋮ann = ∏ i = 1 n a i i \prod_{i=1}^{n} a_{ii} ∏i=1naii
副对角线行列式
∣ a 11 a 12 … a 1 n a 21 a 22 … 0 ⋮ ⋮ ⋱ ⋮ a n 1 0 … 0 ∣ = ∣ 0 0 … a 1 n 0 0 … a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 … a n n ∣ = ∣ 0 0 … a 1 n 0 0 … 0 ⋮ ⋮ ⋱ ⋮ a n 1 0 … 0 ∣ = ( − 1 ) n ( n − 1 ) 2 ∏ i = 1 n a i , n − i + 1 \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & 0 & \dots & 0 \end{vmatrix} = \begin{vmatrix} 0 & 0 & \dots & a_{1n} \\ 0 & 0 & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} = \begin{vmatrix} 0 & 0 & \dots & a_{1n} \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & 0 & \dots & 0 \end{vmatrix} = (-1)^{\frac{n(n-1)}{2}} \prod_{i=1}^{n} a_{i,n-i+1} a11a21⋮an1a12a22⋮0……⋱…a1n0⋮0 = 00⋮an100⋮an2……⋱…a1na2n⋮ann = 00⋮an100⋮0……⋱…a1n0⋮0 =(−1)2n(n−1)i=1∏nai,n−i+1
(3)行和相等
D = ∣ a b c b c a c a b ∣ D = \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} D= abcbcacab
利用行和相等的性质,将第2、3列加到第1列: D = ∣ a + b + c b c a + b + c c a a + b + c a b ∣ D = \begin{vmatrix} a+b+c & b & c \\ a+b+c & c & a \\ a+b+c & a & b \end{vmatrix} D= a+b+ca+b+ca+b+cbcacab
提出第1列的公因子 ((a+b+c)): D = ( a + b + c ) ∣ 1 b c 1 c a 1 a b ∣ D = (a+b+c) \begin{vmatrix} 1 & b & c \\ 1 & c & a \\ 1 & a & b \end{vmatrix} D=(a+b+c) 111bcacab
进行行变换(( r 2 r_2 r2 - r 1 r_1 r1, r 3 r_3 r3 - r 1 r_1 r1)): D = ( a + b + c ) ∣ 1 b c 0 c − b a − c 0 a − b b − c ∣ D = (a+b+c) \begin{vmatrix} 1 & b & c \\ 0 & c-b & a-c \\ 0 & a-b & b-c \end{vmatrix} D=(a+b+c) 100bc−ba−bca−cb−c
按第1列展开计算: D = ( a + b + c ) ⋅ 1 ⋅ ∣ c − b a − c a − b b − c ∣ D = (a+b+c) \cdot 1 \cdot \begin{vmatrix} c-b & a-c \\ a-b & b-c \end{vmatrix} D=(a+b+c)⋅1⋅ c−ba−ba−cb−c
计算二阶行列式: D = ( a + b + c ) [ ( c − b ) ( b − c ) − ( a − c ) ( a − b ) ] D = (a+b+c)\left[(c-b)(b-c) - (a-c)(a-b)\right] D=(a+b+c)[(c−b)(b−c)−(a−c)(a−b)]
化简最终结果: D = − ( a + b + c ) ( a 2 + b 2 + c 2 − a b − b c − c a ) D = -(a+b+c)(a^2 + b^2 + c^2 - ab - bc - ca) D=−(a+b+c)(a2+b2+c2−ab−bc−ca)
(4)爪型行列式
利用斜爪消除竖爪或平爪
D = ∣ 1 1 1 1 1 2 0 0 1 0 3 0 1 0 0 4 ∣ D = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 0 & 0 \\ 1 & 0 & 3 & 0 \\ 1 & 0 & 0 & 4 \\ \end{vmatrix} D= 1111120010301004
核心思路 利用斜爪(第2行第2列、第3行第3列、第4行第4列的非零元素)消除横爪(第一行除首元素外的元素),通过行变换将行列式转化为更简单的形式。
利用斜爪主元消除第一行的横爪元素 对第一行进行行变换,减去各行与斜爪主元比值的乘积,即: r 1 = r 1 − 1 2 r 2 − 1 3 r 3 − 1 4 r 4 r_1 = r_1 - \frac{1}{2}r_2 - \frac{1}{3}r_3 - \frac{1}{4}r_4 r1=r1−21r2−31r3−41r4
变换后行列式变为: D = ∣ − 1 12 0 0 0 1 2 0 0 1 0 3 0 1 0 0 4 ∣ D = \begin{vmatrix} -\frac{1}{12} & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 1 & 0 & 3 & 0 \\ 1 & 0 & 0 & 4 \\ \end{vmatrix} D= −121111020000300004
计算下三角行列式的值 此时行列式为下三角行列式,其值等于主对角线元素的乘积: D = − 1 12 × 2 × 3 × 4 D = -\frac{1}{12} \times 2 \times 3 \times 4 D=−121×2×3×4 = -2
(5)范德蒙德行列式
V n ( x 1 , x 2 , … , x n ) = ∣ 1 1 ⋯ 1 x 1 x 2 ⋯ x n x 1 2 x 2 2 ⋯ x n 2 ⋮ ⋮ ⋱ ⋮ x 1 n − 1 x 2 n − 1 ⋯ x n n − 1 ∣ = ∏ 1 ≤ i ≤ j ≤ n ( x j − x i ) V_n(x_1, x_2, \dots, x_n) = \begin{vmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_n \\ x_1^2 & x_2^2 & \cdots & x_n^2 \\ \vdots & \vdots & \ddots & \vdots \\ x_1^{n-1} & x_2^{n-1} & \cdots & x_n^{n-1} \end{vmatrix} = \prod_{\substack{1 \leq i \leq j \leq n}} (x_j - x_i) Vn(x1,x2,…,xn)=
1x1x12⋮x1n−11x2x22⋮x2n−1⋯⋯⋯⋱⋯1xnxn2⋮xnn−1
=1≤i≤j≤n∏(xj−xi)
特征:第 i 行( i = 1 , 2 … , n i = 1,2\dots,n i=1,2…,n) 元素是 ( x 1 , x 2 , , x n x_1, x_2, , x_n x1,x2,,xn) 的 i - 1次幂,呈现 “幂次递增” 的三角结构
(6) 按某一行(列)展开
∣ A ∣ = { a i 1 A i 1 + a i 2 A i 2 + ⋯ + a i n A i n = ∑ j = 1 n a i j A i j ( i = 1 , 2 , ⋯ , n ) , a 1 j A 1 j + a 2 j A 2 j + ⋯ + a n j A n j = ∑ i = 1 n a i j A i j ( j = 1 , 2 , ⋯ , n ) . |A| = \begin{cases} a_{i1}A_{i1} + a_{i2}A_{i2} + \cdots + a_{in}A_{in} = \sum_{j=1}^{n} a_{ij}A_{ij} \ (i = 1, 2, \cdots, n), \\ a_{1j}A_{1j} + a_{2j}A_{2j} + \cdots + a_{nj}A_{nj} = \sum_{i=1}^{n} a_{ij}A_{ij} \ (j = 1, 2, \cdots, n). \end{cases} ∣A∣={ai1Ai1+ai2Ai2+⋯+ainAin=∑j=1naijAij (i=1,2,⋯,n),a1jA1j+a2jA2j+⋯+anjAnj=∑i=1naijAij (j=1,2,⋯,n).
(7)拉普拉斯展开式(分块矩阵求行列式)
设 A \boldsymbol{A} A 为 m m m 阶矩阵, B \boldsymbol{B} B 为 n n n 阶矩阵,则
∣ A O O B ∣ = ∣ A C O B ∣ = ∣ A O C B ∣ = ∣ A ∣ ∣ B ∣ , ∣ O A B O ∣ = ∣ C A B O ∣ = ∣ O A B C ∣ = ( − 1 ) m n ∣ A ∣ ∣ B ∣ . \begin{align*} \begin{vmatrix} \boldsymbol{A} & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{B} \end{vmatrix} &= \begin{vmatrix} \boldsymbol{A} & \boldsymbol{C} \\ \boldsymbol{O} & \boldsymbol{B} \end{vmatrix} = \begin{vmatrix} \boldsymbol{A} & \boldsymbol{O} \\ \boldsymbol{C} & \boldsymbol{B} \end{vmatrix} = \vert\boldsymbol{A}\vert\vert\boldsymbol{B}\vert, \\ \\ \begin{vmatrix} \boldsymbol{O} & \boldsymbol{A} \\ \boldsymbol{B} & \boldsymbol{O} \end{vmatrix} &= \begin{vmatrix} \boldsymbol{C} & \boldsymbol{A} \\ \boldsymbol{B} & \boldsymbol{O} \end{vmatrix} = \begin{vmatrix} \boldsymbol{O} & \boldsymbol{A} \\ \boldsymbol{B} & \boldsymbol{C} \end{vmatrix} = (-1)^{mn}\vert\boldsymbol{A}\vert\vert\boldsymbol{B}\vert. \end{align*} AOOB OBAO = AOCB = ACOB =∣A∣∣B∣,= CBAO = OBAC =(−1)mn∣A∣∣B∣.
所谓 ( − 1 ) m n (-1)^{mn} (−1)mn即副对角线元素换到主对角线上,交换的次数
2、利用性质,化为可套公式
性质1:行列互换,其值不变,即 ∣ A ∣ = ∣ A T ∣ \vert\boldsymbol{A}\vert = \vert\boldsymbol{{A^T}}\vert ∣A∣=∣AT∣
性质2:若行列式中某行(列)元素全为零,则行列式为零
性质3:若行列式中某行(列)元素有公因子k(k ≠ 0),则k可提到行列式外面,即
∣ a 11 a 12 … a 1 n ⋮ ⋮ ⋮ k a i 1 k a i 2 … k a i n ⋮ ⋮ ⋮ a n 1 a n 2 … a n n ∣ = k ∣ a 11 a 12 … a 1 n ⋮ ⋮ ⋮ a i 1 a i 2 … a i n ⋮ ⋮ ⋮ a n 1 a n 2 … a n n ∣ \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & & \vdots \\ ka_{i1} & ka_{i2} & \dots & ka_{in} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} = k \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \dots & a_{in} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} a11⋮kai1⋮an1a12⋮kai2⋮an2………a1n⋮kain⋮ann =k a11⋮ai1⋮an1a12⋮ai2⋮an2………a1n⋮ain⋮ann
性质4:行列式中某行(列)元素均是两个数之和,则可拆成两个行列式之和,即
∣ a 11 a 12 … a 1 n ⋮ ⋮ ⋮ a i 1 + b i 1 a i 2 + b i 2 … a i n + b i n ⋮ ⋮ ⋮ a n 1 a n 2 … a n n ∣ = ∣ a 11 a 12 … a 1 n ⋮ ⋮ ⋮ a i 1 a i 2 … a i n ⋮ ⋮ ⋮ a n 1 a n 2 … a n n ∣ + ∣ a 11 a 12 … a 1 n ⋮ ⋮ ⋮ b i 1 b i 2 … b i n ⋮ ⋮ ⋮ a n 1 a n 2 … a n n ∣ \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & & \vdots \\ a_{i1} + b_{i1} & a_{i2} + b_{i2} & \dots & a_{in} + b_{in} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \dots & a_{in} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & & \vdots \\ b_{i1} & b_{i2} & \dots & b_{in} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} a11⋮ai1+bi1⋮an1a12⋮ai2+bi2⋮an2………a1n⋮ain+bin⋮ann = a11⋮ai1⋮an1a12⋮ai2⋮an2………a1n⋮ain⋮ann + a11⋮bi1⋮an1a12⋮bi2⋮an2………a1n⋮bin⋮ann
性质5:行列式中两行(列)互换,行列式变号
性质6:行列式中的两行(列)元素相等或对应成比例,则行列式为零
性质7:行列式中某行(列)的k倍加到另一行(列),行列式不变
3、抽象行列式
一般使用 ∣ A B ∣ = ∣ A ∣ ∣ B ∣ \vert\boldsymbol{A}\boldsymbol{B}\vert=\vert\boldsymbol{A}\vert\vert\boldsymbol{B}\vert ∣AB∣=∣A∣∣B∣
【例】 α 1 , α 2 , α 3 均为 3 维列向量,已知 A = [ α 1 , α 2 , α 3 ] , B = [ α 1 − α 2 + 2 α 3 , 2 α 1 + 3 α 2 − 5 α 3 , α 1 + 2 α 2 − α 3 ] 且 ∣ A ∣ = 2 ,则 ∣ B − A ∣ = 10 ‾ \boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3 均为 3 维列向量,已知 \boldsymbol{A} = [\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3], \quad \boldsymbol{B} = [\boldsymbol{\alpha}_1 - \boldsymbol{\alpha}_2 + 2\boldsymbol{\alpha}_3,\ 2\boldsymbol{\alpha}_1 + 3\boldsymbol{\alpha}_2 - 5\boldsymbol{\alpha}_3,\ \boldsymbol{\alpha}_1 + 2\boldsymbol{\alpha}_2 - \boldsymbol{\alpha}_3] 且 |\boldsymbol{A}| = 2,则 |\boldsymbol{B} - \boldsymbol{A}| = \boldsymbol{\underline{10}} α1,α2,α3均为3维列向量,已知A=[α1,α2,α3],B=[α1−α2+2α3, 2α1+3α2−5α3, α1+2α2−α3]且∣A∣=2,则∣B−A∣=10
∣ B − A ∣ = ∣ − α 2 + 2 α 3 , 2 α 1 + 2 α 2 − 5 α 3 , α 1 + 2 α 2 − α 3 ∣ = ( ∗ ) ∣ [ α 1 , α 2 , α 3 ] [ 0 2 1 − 1 2 2 2 − 5 − 2 ] ∣ |\boldsymbol{B} - \boldsymbol{A}| = \begin{vmatrix} -\boldsymbol{\alpha}_2 + 2\boldsymbol{\alpha}_3, & 2\boldsymbol{\alpha}_1 + 2\boldsymbol{\alpha}_2 - 5\boldsymbol{\alpha}_3, & \boldsymbol{\alpha}_1 + 2\boldsymbol{\alpha}_2 - \boldsymbol{\alpha}_3 \end{vmatrix} \stackrel{(*)}{=} \left| [\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3] \begin{bmatrix} 0 & 2 & 1 \\ -1 & 2 & 2 \\ 2 & -5 & -2 \end{bmatrix} \right| ∣B−A∣= −α2+2α3,2α1+2α2−5α3,α1+2α2−α3 =(∗) [α1,α2,α3] 0−1222−512−2
= ∣ α 1 , α 2 , α 3 ∣ ∣ 0 2 1 − 1 2 2 2 − 5 − 2 ∣ = 5 = |\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3 |\begin{vmatrix} 0 & 2 & 1 \\ -1 & 2 & 2 \\ 2 & -5 & -2 \end{vmatrix} = 5 =∣α1,α2,α3∣ 0−1222−512−2 =5
4、抽象向量
例如 ∣ α 1 , α 2 , α 3 ∣ = 5 |\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3 | = 5 ∣α1,α2,α3∣=5 求 [ α 1 + α 2 , α 2 − α 3 , α 3 − α 1 ] [\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2 ,\ \boldsymbol{\alpha}_2 - \boldsymbol{\alpha}_3 ,\ \boldsymbol{\alpha}_3 - \boldsymbol{\alpha}_1 ] [α1+α2, α2−α3, α3−α1]
方法一:利用行列式性质
方法二:化矩阵之积
[ α 1 , α 2 , α 3 ] ∣ 1 0 − 1 1 1 0 0 − 1 1 ∣ [\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3] \left|\begin {array}{c} 1 &0 &-1 \\ 1 &1 &0 \\ 0 &-1 &1 \\ \end{array}\right| [α1,α2,α3] 11001−1−101
二、代数余子式的线性组合
设行列式 ( D ) 为:
D = ∣ 1 − 3 1 − 2 2 − 5 − 2 − 2 0 − 4 5 1 − 3 9 − 6 7 ∣ D = \begin{vmatrix} 1 & -3 & 1 & -2 \\ 2 & -5 & -2 & -2 \\ 0 & -4 & 5 & 1 \\ -3 & 9 & -6 & 7 \end{vmatrix} D= 120−3−3−5−491−25−6−2−217 ,其中 ( M 3 j M_{3j} M3j ) 表示 ( D ) 中第 3 行第 ( j ) 列元素的余子式(j = 1,2,3,4 ),求 M 31 + 3 M 32 − 2 M 33 + 2 M 34 M_{31} + 3M_{32} - 2M_{33} + 2M_{34} M31+3M32−2M33+2M34 的值。
方法一:
M 31 + 3 M 32 − 2 M 33 + 2 M 34 = A 31 − 3 A 32 − 2 A 33 − 2 A 34 M_{31} + 3M_{32} - 2M_{33} + 2M_{34} = A_{31} - 3A_{32} - 2A_{33} - 2A_{34} M31+3M32−2M33+2M34=A31−3A32−2A33−2A34
即求 ∣ 1 − 3 1 − 2 2 − 5 − 2 − 2 1 − 3 − 2 − 2 − 3 9 − 6 7 ∣ \begin{vmatrix} 1 & -3 & 1 & -2 \\ 2 & -5 & -2 & -2 \\ 1 & -3 & -2 & -2 \\ -3 & 9 & -6 & 7 \end{vmatrix} 121−3−3−5−391−2−2−6−2−2−27 的值,值为-3
方法二:求 A ∗ A^* A∗
A ∗ = ( A 11 A 21 ⋯ A n 1 A 12 A 22 ⋯ A n 2 ⋮ ⋮ ⋱ ⋮ A 1 n A 2 n ⋯ A n n ) = ∣ A ∣ A − 1 \boldsymbol{A}^* = \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix} = |A|A^{-1} A∗= A11A12⋮A1nA21A22⋮A2n⋯⋯⋱⋯An1An2⋮Ann =∣A∣A−1
三、求 A n A^n An
方法一:若r(A)=1,A可以写作 α β T αβ^T αβT, A n = α β T α β T ⋅ ⋅ ⋅ α β T = ( ( t r ( A ) ) n − 1 A A^n = αβ^Tαβ^T···αβ^T = ((tr(A))^{n-1}A An=αβTαβT⋅⋅⋅αβT=((tr(A))n−1A
方法二:相似对角化, P − 1 A P = Λ = > A n = P Λ n P − 1 P^{-1}AP = Λ => A^n = PΛ^nP^{-1} P−1AP=Λ=>An=PΛnP−1
方法三: ∣ A 0 0 B ∣ n = ∣ A n 0 0 B n ∣ \left|\begin {array}{c} A &0 \\ 0 &B \\ \end{array}\right| ^ n = \left|\begin {array}{c} A^n &0 \\ 0 &B^n \\ \end{array}\right| A00B n= An00Bn
方法四:数学归纳法,如求 ∣ 0 1 0 − 1 0 1 0 1 0 ∣ \left|\begin {array}{c} 0 &1 &0 \\ -1 &0 &1 \\ 0 &1 &0 \\ \end{array}\right| 0−10101010
四、证明A可逆
|A| = 0
<=> A的列向量线性无关
<=> Ax=0只有零解
<=> A没有0特征值
<=> p+q=n(正负惯性指数)
五、求A的逆
1、定义法
已知矩阵满足的等式(如幂等式),通过构造 ( A B = E \boldsymbol{AB} = \boldsymbol{E} AB=E ) 求逆
【例】
已知 A 2 = E ,求 ( A + 2 E ) − 1 \boldsymbol{A}^2 = \boldsymbol{E} ,求 (\boldsymbol{A} + 2\boldsymbol{E})^{-1} A2=E,求(A+2E)−1
由 A 2 − E = 0 \boldsymbol{A}^2 - \boldsymbol{E} = \boldsymbol{0} A2−E=0,因式分解得: A 2 − E = ( A + 2 E ) ( A − 2 E ) + 3 E = 0 \boldsymbol{A}^2 - \boldsymbol{E} = (\boldsymbol{A} + 2\boldsymbol{E})(\boldsymbol{A} - 2\boldsymbol{E}) + 3\boldsymbol{E} = \boldsymbol{0} A2−E=(A+2E)(A−2E)+3E=0
调整后构造 A B = E \boldsymbol{AB} = \boldsymbol{E} AB=E:
( A + 2 E ) ⋅ 2 E − A 3 = E (\boldsymbol{A} + 2\boldsymbol{E}) \cdot \frac{2\boldsymbol{E} - \boldsymbol{A}}{3} = \boldsymbol{E} (A+2E)⋅32E−A=E
因此 ( A + 2 E ) − 1 = 2 E − A 3 (\boldsymbol{A} + 2\boldsymbol{E})^{-1} = \frac{2\boldsymbol{E} - \boldsymbol{A}}{3} (A+2E)−1=32E−A
2、初等变换
( A ∣ E ) → 初等行变换 ( E ∣ A − 1 ) (\boldsymbol{A} \mid \boldsymbol{E}) \xrightarrow{\text{初等行变换}} (\boldsymbol{E} \mid \boldsymbol{A}^{-1}) (A∣E)初等行变换(E∣A−1)
3、公式
二阶矩阵求逆公式: 设二阶矩阵为 A = ( a b c d ) \boldsymbol{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} A=(acbd) 若其行列式不等于0(即矩阵可逆),则其逆矩阵为: A − 1 = 1 a d − b c ( d − b − c a ) \boldsymbol{A}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} A−1=ad−bc1(d−c−ba)
分块矩阵求逆
( A 0 0 B ) − 1 = ( A − 1 0 0 B − 1 ) \begin{pmatrix} \boldsymbol{A} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{B} \end{pmatrix}^{-1} = \begin{pmatrix} \boldsymbol{A}^{-1} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{B}^{-1} \end{pmatrix} (A00B)−1=(A−100B−1)
( 0 A B 0 ) − 1 = ( 0 B − 1 A − 1 0 ) \begin{pmatrix} \boldsymbol{0} & \boldsymbol{A} \\ \boldsymbol{B} & \boldsymbol{0} \end{pmatrix}^{-1} = \begin{pmatrix} \boldsymbol{0} & \boldsymbol{B}^{-1} \\ \boldsymbol{A}^{-1} & \boldsymbol{0} \end{pmatrix} (0BA0)−1=(0A−1B−10)
六、求秩
方法一:定义法
设A是m×n矩阵,若存在k阶子式不为零,而任意k+1阶子式(如果有的话)全为零,则r(A)=k
方法二:化行阶梯矩阵
方法三:线性相关性
方法四:秩公式
设 A \boldsymbol{A} A 为矩阵,以下是矩阵秩 r ( A r(\boldsymbol{A} r(A) 的常用性质
① 0 ≤ r ( A ) ≤ min { m , n } 0 \leq r(\boldsymbol{A}) \leq \min\{m, n\} 0≤r(A)≤min{m,n}
② r ( k A ) = r ( A ) ( k ≠ 0 ) r(k\boldsymbol{A}) = r(\boldsymbol{A}) \quad (k \neq 0) r(kA)=r(A)(k=0)
③ r ( A B ) ≤ min { r ( A ) , r ( B ) } r(\boldsymbol{AB}) \leq \min\{r(\boldsymbol{A}), r(\boldsymbol{B})\} r(AB)≤min{r(A),r(B)}
④对同型矩阵A、B
r ( A + B ) ≤ r ( A ) + r ( B ) r(\boldsymbol{A} + \boldsymbol{B}) \leq r(\boldsymbol{A}) + r(\boldsymbol{B}) r(A+B)≤r(A)+r(B)
⑤ r ( A ∗ ) = { n , r ( A ) = n 1 , r ( A ) = n − 1 , 其中 A 为 n ( n ≥ 2 ) 阶方阵 0 , r ( A ) < n − 1 r(\boldsymbol{A}^*) = \begin{cases} n, & r(\boldsymbol{A}) = n \quad \\ 1, & r(\boldsymbol{A}) = n - 1 \quad ,其中A为n(n≥2)阶方阵\\ 0, & r(\boldsymbol{A}) < n - 1 \quad \end{cases} r(A∗)=⎩ ⎨ ⎧n,1,0,r(A)=nr(A)=n−1,其中A为n(n≥2)阶方阵r(A)<n−1
⑥设 A \boldsymbol{A} A 是 m × n m \times n m×n矩阵, P \boldsymbol{P} P (m阶)、 Q \boldsymbol{Q} Q( n 阶)是可逆矩阵,则:
r ( A ) = r ( P A ) = r ( A Q ) = r ( P A Q ) r(\boldsymbol{A}) = r(\boldsymbol{PA}) = r(\boldsymbol{AQ}) = r(\boldsymbol{PAQ}) r(A)=r(PA)=r(AQ)=r(PAQ)
⑦ 若 A m × n B n × s = O ,则 r ( A ) + r ( B ) ≤ n 若A_{m×n}B_{n×s}=\boldsymbol{O},则r(\boldsymbol{A}) + r(\boldsymbol{B}) \leq n 若Am×nBn×s=O,则r(A)+r(B)≤n
⑧ r ( A ) = r ( A T ) = r ( A T A ) = r ( A A T ) r(\boldsymbol{A}) = r(\boldsymbol{A}^\text{T}) = r(\boldsymbol{A}^\text{T}\boldsymbol{A}) = r(\boldsymbol{A}\boldsymbol{A}^\text{T}) r(A)=r(AT)=r(ATA)=r(AAT)
七、线性表示的判定
定义:
若向量β能表示成向量组 α 1 , α 2 , ⋅ ⋅ ⋅ , α m α_1,α_2,···,α_m α1,α2,⋅⋅⋅,αm的线性组合,即存在m个数 k 1 , k 2 , ⋅ ⋅ ⋅ , k m k_1,k_2,···,k_m k1,k2,⋅⋅⋅,km,使得 β = k 1 α 1 , k 2 α 2 , ⋅ ⋅ ⋅ , k m α m β = k_1α_1,k_2α_2,···,k_mα_m β=k1α1,k2α2,⋅⋅⋅,kmαm,则称向量β能被向量组 α 1 , α 2 , ⋅ ⋅ ⋅ , α m α_1,α_2,···,α_m α1,α2,⋅⋅⋅,αm线性表示
<=>秩 r( α 1 , α 2 , ⋅ ⋅ ⋅ , α m α_1,α_2,···,α_m α1,α2,⋅⋅⋅,αm) = r( α 1 , α 2 , ⋅ ⋅ ⋅ , α m , β α_1,α_2,···,α_m,β α1,α2,⋅⋅⋅,αm,β)
<=>方程组 α 1 , α 2 , ⋅ ⋅ ⋅ , α m α_1,α_2,···,α_m α1,α2,⋅⋅⋅,αmx = β有解
<= α 1 , α 2 , ⋅ ⋅ ⋅ , α m α_1,α_2,···,α_m α1,α2,⋅⋅⋅,αm线性无关, α 1 , α 2 , ⋅ ⋅ ⋅ , α m , β α_1,α_2,···,α_m,β α1,α2,⋅⋅⋅,αm,β线性相关
<= m个m维 α 1 , α 2 , ⋅ ⋅ ⋅ , α m α_1,α_2,···,α_m α1,α2,⋅⋅⋅,αm线性无关,任意m维β可被 α 1 , α 2 , ⋅ ⋅ ⋅ , α m α_1,α_2,···,α_m α1,α2,⋅⋅⋅,αm唯一表示
【例】
向量的线性表示综合应用 已知向量组: α 1 = ( 1 2 1 ) , α 2 = ( 1 1 0 ) , α 3 = ( 2 3 1 ) , β = ( 3 4 1 ) \boldsymbol{\alpha}_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \quad \boldsymbol{\alpha}_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \quad \boldsymbol{\alpha}_3 = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}, \quad \boldsymbol{\beta} = \begin{pmatrix} 3 \\ 4 \\ 1 \end{pmatrix} α1= 121 ,α2= 110 ,α3= 231 ,β= 341
回答下列问题:
判断向量 β \boldsymbol{\beta} β能否由向量组 α 1 , α 2 , α 3 \boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3 α1,α2,α3线性表示?若能,写出一个线性表示式。
利用秩的关系验证第1题的结论。
若存在向量 γ \boldsymbol{\gamma} γ,使得 α 1 , α 2 , γ \boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\gamma} α1,α2,γ线性无关,且 α 1 , α 2 , γ , β \boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\gamma}, \boldsymbol{\beta} α1,α2,γ,β线性相关,证明 β \boldsymbol{\beta} β能由 α 1 , α 2 , γ \boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\gamma} α1,α2,γ线性表示。
【解】
- 判断 β \boldsymbol{\beta} β能否由 α 1 , α 2 , α 3 \boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3 α1,α2,α3线性表示 假设 β = k 1 α 1 + k 2 α 2 + k 3 α 3 \boldsymbol{\beta} = k_1\boldsymbol{\alpha}_1 + k_2\boldsymbol{\alpha}_2 + k_3\boldsymbol{\alpha}_3 β=k1α1+k2α2+k3α3,展开得方程组: { k 1 + k 2 + 2 k 3 = 3 2 k 1 + k 2 + 3 k 3 = 4 k 1 + 0 k 2 + k 3 = 1 \begin{cases} k_1 + k_2 + 2k_3 = 3 \\ 2k_1 + k_2 + 3k_3 = 4 \\ k_1 + 0k_2 + k_3 = 1 \end{cases} ⎩ ⎨ ⎧k1+k2+2k3=32k1+k2+3k3=4k1+0k2+k3=1 对增广矩阵作初等行变换: ( 1 1 2 3 2 1 3 4 1 0 1 1 ) → ( 1 0 1 1 0 1 1 2 0 0 0 0 ) \left(\begin{array}{ccc|c} 1 & 1 & 2 & 3 \\ 2 & 1 & 3 & 4 \\ 1 & 0 & 1 & 1 \end{array}\right) \to \left(\begin{array}{ccc|c} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{array}\right) 121110231341 → 100010110120 方程组有解(无穷多解),取 k 3 = 0 k_3 = 0 k3=0,得 k 1 = 1 , k 2 = 2 k_1 = 1, k_2 = 2 k1=1,k2=2,故一个线性表示式为: β = α 1 + 2 α 2 + 0 α 3 \boldsymbol{\beta} = \boldsymbol{\alpha}_1 + 2\boldsymbol{\alpha}_2 + 0\boldsymbol{\alpha}_3 β=α1+2α2+0α3
- 用秩的关系验证 构造矩阵: 向量组矩阵: A = ( α 1 , α 2 , α 3 ) \boldsymbol{A} = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3) A=(α1,α2,α3) 增广矩阵: B = ( α 1 , α 2 , α 3 , β ) \boldsymbol{B} = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\beta}) B=(α1,α2,α3,β) 由第1题的行变换结果可知: r ( A ) = 2 , r ( B ) = 2 r(\boldsymbol{A}) = 2, \quad r(\boldsymbol{B}) = 2 r(A)=2,r(B)=2 根据线性表示的等价条件: r ( α 1 , α 2 , α 3 ) = r ( α 1 , α 2 , α 3 , β ) = 2 r(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3) = r(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\beta}) = 2 r(α1,α2,α3)=r(α1,α2,α3,β)=2 故 β \boldsymbol{\beta} β能由 α 1 , α 2 , α 3 \boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3 α1,α2,α3线性表示。
- 证明 β \boldsymbol{\beta} β能由 α 1 , α 2 , γ \boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\gamma} α1,α2,γ线性表示 已知条件: α 1 , α 2 , γ \boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\gamma} α1,α2,γ线性无关 ⟹ r ( α 1 , α 2 , γ ) = 3 \implies r(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\gamma}) = 3 ⟹r(α1,α2,γ)=3 , α 1 , α 2 , γ , β \boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\gamma}, \boldsymbol{\beta} α1,α2,γ,β线性相关 ⟹ r ( α 1 , α 2 , γ , β ) ≤ 3 \implies r(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\gamma}, \boldsymbol{\beta}) \leq 3 ⟹r(α1,α2,γ,β)≤3 又因为: r ( α 1 , α 2 , γ ) ≤ r ( α 1 , α 2 , γ , β ) r(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\gamma}) \leq r(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\gamma}, \boldsymbol{\beta}) r(α1,α2,γ)≤r(α1,α2,γ,β) 所以 r ( α 1 , α 2 , γ , β ) = 3 r(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\gamma}, \boldsymbol{\beta}) = 3 r(α1,α2,γ,β)=3,即: r ( α 1 , α 2 , γ ) = r ( α 1 , α 2 , γ , β ) r(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\gamma}) = r(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\gamma}, \boldsymbol{\beta}) r(α1,α2,γ)=r(α1,α2,γ,β) 根据线性表示的等价条件, β \boldsymbol{\beta} β能由 α 1 , α 2 , γ \boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\gamma} α1,α2,γ线性表示。
八、线性无关
证明** α 1 , α 2 , ⋅ ⋅ ⋅ , α n α_1,α_2,···,α_n α1,α2,⋅⋅⋅,αn**线性无关
<=> 定义 k 1 α 1 , k 2 α 2 , ⋅ ⋅ ⋅ , k n α n = 0 当且仅当 k i 全为 0 k_1α_1,k_2α_2,···,k_nα_n = 0 当且仅当k_i全为0 k1α1,k2α2,⋅⋅⋅,knαn=0当且仅当ki全为0
<=>秩r( α 1 , α 2 , ⋅ ⋅ ⋅ , α n α_1,α_2,···,α_n α1,α2,⋅⋅⋅,αn) = n
<=>方程 α 1 , α 2 , ⋅ ⋅ ⋅ , α n α_1,α_2,···,α_n α1,α2,⋅⋅⋅,αnx = 0 只有零解
<=> 任意一个 α i α_i αi均不可由其他α表示
<= | α 1 , α 2 , ⋅ ⋅ ⋅ , α n α_1,α_2,···,α_n α1,α2,⋅⋅⋅,αn| ≠ 0
九、求极大线性无关组
①将列向量们组成矩阵A,作初等行变换,化为行阶梯形矩阵,并确定r(A)
②按列找出一个秩为r(A)的子矩阵,即为一个极大线性无关组
【例】
已知列向量组:
α 1 = ( 1 2 2 3 ) , α 2 = ( 1 1 2 3 ) , α 3 = ( 0 1 0 0 ) , α 4 = ( 2 5 4 6 ) \boldsymbol{\alpha}_1 = \begin{pmatrix} 1 \\ 2 \\ 2 \\ 3 \end{pmatrix}, \quad \boldsymbol{\alpha}_2 = \begin{pmatrix} 1 \\ 1 \\ 2 \\ 3 \end{pmatrix}, \quad \boldsymbol{\alpha}_3 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \quad \boldsymbol{\alpha}_4 = \begin{pmatrix} 2 \\ 5 \\ 4 \\ 6 \end{pmatrix} α1=
1223
,α2=
1123
,α3=
0100
,α4=
2546
按以下步骤求该向量组的极大线性无关组:
- 将列向量组成矩阵并化为行阶梯形,确定矩阵的秩;
- 根据行阶梯形矩阵找出一个极大线性无关组。
【解】
将列向量按顺序组成矩阵 A \boldsymbol{A} A:
A = ( α 1 , α 2 , α 3 , α 4 ) = ( 1 1 0 2 2 1 1 5 2 2 0 4 3 3 0 6 ) \boldsymbol{A} = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_4) = \begin{pmatrix} 1 & 1 & 0 & 2 \\ 2 & 1 & 1 & 5 \\ 2 & 2 & 0 & 4 \\ 3 & 3 & 0 & 6 \end{pmatrix} A=(α1,α2,α3,α4)=
1223112301002546
对矩阵作初等行变换:
( 1 1 0 2 2 1 1 5 2 2 0 4 3 3 0 6 ) → r 2 − 2 r 1 r 3 − 2 r 1 r 4 − 3 r 1 ( 1 1 0 2 0 − 1 1 1 0 0 0 0 0 0 0 0 ) → − r 2 ( 1 1 0 2 0 1 − 1 − 1 0 0 0 0 0 0 0 0 ) \begin{align*} &\begin{pmatrix} 1 & 1 & 0 & 2 \\ 2 & 1 & 1 & 5 \\ 2 & 2 & 0 & 4 \\ 3 & 3 & 0 & 6 \end{pmatrix} \xrightarrow[\substack{r_2-2r_1\\r_3-2r_1 \\ r_4-3r_1}]{} \begin{pmatrix} 1 & 1 & 0 & 2 \\ 0 & -1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow[]{-r_2} \begin{pmatrix} 1 & 1 & 0 & 2 \\ 0 & 1 & -1 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \end{align*}
1223112301002546
r2−2r1r3−2r1r4−3r1
10001−10001002100
−r2
100011000−1002−100
行阶梯形矩阵有 2个非零行,因此矩阵的秩 r ( A ) = 2 r(\boldsymbol{A}) = 2 r(A)=2。
在行阶梯形矩阵中,非零行的首个非零元素(主元)所在的列对应原矩阵的列向量,构成极大线性无关组。
观察行阶梯形矩阵:
- 第1个主元在第1列
- 第2个主元在第2列
因此,原向量组中对应的列向量 α 1 , α 2 \boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2 α1,α2 构成一个极大线性无关组(选法不唯一)。
十、等价向量组
若
(Ⅰ) α 1 , α 2 , ⋅ ⋅ ⋅ , α s α_1,α_2,···,α_s α1,α2,⋅⋅⋅,αs
(Ⅱ) β 1 , β 2 , ⋅ ⋅ ⋅ , β t β_1,β_2,···,β_t β1,β2,⋅⋅⋅,βt
证明(Ⅰ)(Ⅱ)等价
<=>(Ⅰ)中的向量可由(Ⅱ)表出且r(Ⅰ) = r(Ⅱ)
<=>r(Ⅰ) = r(Ⅱ) = r(Ⅰ,Ⅱ)
若r(Ⅰ) = r(Ⅰ,Ⅱ),(Ⅱ)可由(Ⅰ)线性表示
若r(Ⅱ) = r(Ⅰ,Ⅱ),(Ⅰ)可由(Ⅱ)线性表示
应注意等价矩阵和等价向量组的联系和区别
【例】
已知向量组:
(Ⅰ) α 1 = ( 1 0 1 ) , α 2 = ( 1 1 0 ) \text{(Ⅰ)}\quad \boldsymbol{\alpha}_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix},\ \boldsymbol{\alpha}_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} (Ⅰ)α1=
101
, α2=
110
(Ⅱ) β 1 = ( 0 1 − 1 ) , β 2 = ( 2 1 1 ) , β 3 = ( 1 1 0 ) \text{(Ⅱ)}\quad \boldsymbol{\beta}_1 = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix},\ \boldsymbol{\beta}_2 = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix},\ \boldsymbol{\beta}_3 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} (Ⅱ)β1=
01−1
, β2=
211
, β3=
110
完成下列问题:
- 证明向量组(Ⅰ)与(Ⅱ)等价;
- 说明等价向量组与等价矩阵的区别
【解】
构造矩阵 A = ( α 1 , α 2 ) \boldsymbol{A} = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2) A=(α1,α2) 并求秩:
A = ( 1 1 0 1 1 0 ) → r 3 − r 1 ( 1 1 0 1 0 − 1 ) → r 3 + r 2 ( 1 1 0 1 0 0 ) \boldsymbol{A} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} \xrightarrow{r_3-r_1} \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 0 & -1 \end{pmatrix} \xrightarrow{r_3+r_2} \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} A=
101110
r3−r1
10011−1
r3+r2
100110
得 r ( Ⅰ ) = 2 r(\text{Ⅰ}) = 2 r(Ⅰ)=2。
构造矩阵 B = ( β 1 , β 2 , β 3 ) \boldsymbol{B} = (\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3) B=(β1,β2,β3) 并求秩:
B = ( 0 2 1 1 1 1 − 1 1 0 ) → r 1 ↔ r 2 ( 1 1 1 0 2 1 0 2 1 ) → r 3 − r 2 ( 1 1 1 0 2 1 0 0 0 ) \boldsymbol{B} = \begin{pmatrix} 0 & 2 & 1 \\ 1 & 1 & 1 \\ -1 & 1 & 0 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2 \\} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 2 & 1 \end{pmatrix} \xrightarrow{r_3-r_2} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 0 \end{pmatrix} B=
01−1211110
r1↔r2
100122111
r3−r2
100120110
得 r ( Ⅱ ) = 2 r(\text{Ⅱ}) = 2 r(Ⅱ)=2
构造 C = ( α 1 , α 2 , β 1 , β 2 , β 3 ) \boldsymbol{C} = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3) C=(α1,α2,β1,β2,β3),通过行变换得:
r ( C ) = 2 r(\boldsymbol{C}) = 2 r(C)=2
即 r ( Ⅰ , Ⅱ ) = 2 r(\text{Ⅰ},\text{Ⅱ}) = 2 r(Ⅰ,Ⅱ)=2。
结论:
因 r ( Ⅰ ) = r ( Ⅱ ) = r ( Ⅰ , Ⅱ ) = 2 r(\text{Ⅰ}) = r(\text{Ⅱ}) = r(\text{Ⅰ},\text{Ⅱ}) = 2 r(Ⅰ)=r(Ⅱ)=r(Ⅰ,Ⅱ)=2,故向量组(Ⅰ)与(Ⅱ)等价。
对比项 | 等价向量组 | 等价矩阵 |
---|---|---|
定义 | 互相可线性表示的向量组 | 经有限次初等变换可互化的矩阵 |
核心条件 | r ( Ⅰ ) = r ( Ⅱ ) = r ( Ⅰ , Ⅱ ) r(\text{Ⅰ}) = r(\text{Ⅱ}) = r(\text{Ⅰ},\text{Ⅱ}) r(Ⅰ)=r(Ⅱ)=r(Ⅰ,Ⅱ) | 同型且秩相等 |
维度要求 | 向量需同维(不一定同个数) | 必须同型(行数和列数均相同) |
应用场景 | 线性表示、基变换等 | 矩阵秩的判定、方程组同解性等 |