如何获取RDD分区_大数据培训

发布于:2023-01-01 ⋅ 阅读:(468) ⋅ 点赞:(0)

键值对RDD数据分区

Spark目前支持Hash分区和Range分区,用户也可以自定义分区,Hash分区为当前的默认分区,Spark中分区器直接决定了RDD中分区的个数、RDD中每条数据经过Shuffle过程属于哪个分区和Reduce的个数

注意:

(1)只有Key-Value类型的RDD才有分区器的,非Key-Value类型的RDD分区的值是None
(2)每个RDD的分区ID范围:0~numPartitions-1,决定这个值是属于那个分区的。

1 获取RDD分区

可以通过使用RDD的partitioner 属性来获取 RDD 的分区方式。它会返回一个 scala.Option 对象, 通过get方法获取其中的值。相关源码如下:

def getPartition(key: Any): Int = key match {

  case null => 0                              

  case _ => Utils.nonNegativeMod(key.hashCode, numPartitions)

}

def nonNegativeMod(x: Int, mod: Int): Int = {

  val rawMod = x % mod

  rawMod + (if (rawMod < 0) mod else 0)

}

(1)创建一个pairRDD

scala> val pairs = sc.parallelize(List((1,1),(2,2),(3,3)))

pairs: org.apache.spark.rdd.RDD[(Int, Int)] = ParallelCollectionRDD[3] at parallelize at <console>:24

(2)查看RDD的分区器

scala> pairs.partitioner

res1: Option[org.apache.spark.Partitioner] = None

(3)导入HashPartitioner类

scala> import org.apache.spark.HashPartitioner

import org.apache.spark.HashPartitioner

(4)使用HashPartitioner对RDD进行重新分区

scala> val partitioned = pairs.partitionBy(new HashPartitioner(2))

partitioned: org.apache.spark.rdd.RDD[(Int, Int)] = ShuffledRDD[4] at partitionBy at <console>:27

(5)查看重新分区后RDD的分区器

scala> partitioned.partitioner

res2: Option[org.apache.spark.Partitioner] = Some(org.apache.spark.HashPartitioner@2)

想要了解跟多关于大数据培训课程内容欢迎关注尚硅谷大数据培训,尚硅谷除了这些技术文章外还有免费的高质量大数据培训课程视频供广大学员下载学习。

 


网站公告

今日签到

点亮在社区的每一天
去签到

热门文章