高数——必背秘籍
文章目录
一、等价无穷小
当x—>0,有:
(1)
- x ∼ s i n x ∼ t a n x ∼ a r c s i n x ∼ a r c t a n x ∼ l n ( x + 1 ) ∼ l n ( x + 1 + x 2 ) ∼ e x − 1 x \sim sinx \sim tanx \sim arcsinx \sim arctanx \sim ln(x+1) \sim ln(x+\sqrt{1+x^2}) \sim e^x - 1 x∼sinx∼tanx∼arcsinx∼arctanx∼ln(x+1)∼ln(x+1+x2)∼ex−1
- x n ∼ x + 1 n − 1 \frac{x}{n} \sim \sqrt[n]{x+1}-1 nx∼nx+1−1
- n x ∼ ( 1 + x ) n − 1 nx \sim (1+x)^n - 1 nx∼(1+x)n−1
- 1 − c o s x ∼ x 2 2 1-cosx \sim \frac{x^2}{2} 1−cosx∼2x2
- a x − 1 ∼ x l n a a^x-1 \sim xlna ax−1∼xlna
(2)
- x − sin x ∼ x 3 6 x-\sin x \sim \frac{x^3}{6} x−sinx∼6x3
- arcsin x − x ∼ x 3 6 \arcsin x- x \sim \frac{x^3}{6} arcsinx−x∼6x3
- x − ln ( 1 + x ) ∼ x 2 2 x- \ln(1+x) \sim \frac{x^2}{2} x−ln(1+x)∼2x2
- tan x − x ∼ x 3 3 \tan x- x \sim \frac{x^3}{3} tanx−x∼3x3
- x − arctan x ∼ x 3 3 x- \arctan x \sim \frac{x^3}{3} x−arctanx∼3x3
二、积分中值定理
极值定理
假设m,M是区间[a,b]上的最小最大值,则有
m ( b − a ) ≤ ∫ a b f ( x ) d x ≤ M ( b − a ) m(b-a) \leq \int_a^b{f(x)}dx \leq M(b-a) m(b−a)≤∫abf(x)dx≤M(b−a)
图文解说:
连续函数的介值定理
连续函数的介值定理,它的含义是说对于一个在区间[a, b]上连续的函数,对于任一在其最大值和最小值之间的常数,我们必然可以在区间[a, b]上找到一点,使得该点的函数值等于这个常数。
积分中值定理
在极值定理中除以 b − a b-a b−a ( b − a ≥ 0 ) (b-a \geq0) (b−a≥0),则有
m ≤ 1 b − a ∫ a b f ( x ) d x ≤ M m \leq \frac{1}{b-a}\int_a^b{f(x)}dx \leq M m≤b−a1∫abf(x)dx≤M,
在 ξ ∈ [ a , b ] , 有 \xi \in [a,b],有 ξ∈[a,b],有
1 b − a ∫ a b f ( x ) d x = f ( ξ ) \frac{1}{b-a}\int_a^b{f(x)}dx=f(\xi) b−a1∫abf(x)dx=f(ξ)
在乘以 b − a b-a b−a ( b − a ≥ 0 ) (b-a \geq0) (b−a≥0),则有
∫ a b f ( x ) d x = f ( ξ ) ( b − a ) \int_a^b{f(x)}dx=f(\xi)(b-a) ∫abf(x)dx=f(ξ)(b−a)
图文解说
三、连续、可导关系
可导一定连续,连续不一定可导
可导:
- 导数存在
- 左导 = 右导
f Δ x → 0 ’ ( x ) = f ( x ) − f ( x + Δ x ) Δ x f^{’}_{\Delta x\rightarrow 0}(x) =\frac{f(x) - f(x+\Delta x)}{\Delta x} fΔx→0’(x)=Δxf(x)−f(x+Δx)
连续:
- 左极限 = 右极限 = 该点函数值
lim Δ x → 0 f ( x + Δ x ) − f ( x ) = f ( x ) \lim_{\Delta x\rightarrow0}f(x +\Delta x) - f(x) = f(x) Δx→0limf(x+Δx)−f(x)=f(x)
反例就是 f ( x ) = ∣ x ∣ f(x)= |x| f(x)=∣x∣
四、两个重要极限及推导过程
两个重要极限
- lim x → 0 sin x x = 1 \lim_{x\rightarrow 0}\frac{\sin x}{x} = 1 x→0limxsinx=1
- lim x → ∞ ( 1 + 1 x ) x = e \lim_{x\rightarrow \infty}(1+\frac{1}{x})^{x}=e x→∞lim(1+x1)x=e
具体推理过程:两个重要极限
五、常见求导公式
- ( C ) ′ = 0 (C)^ {'} = 0 (C)′=0
- ( x a ) ′ = a x a − 1 (x^a)^ {'} = ax^{a-1} (xa)′=axa−1
- ( a x ) ′ = a x ln a (a^x)^ {'} = a^x\ln a (ax)′=axlna
- ( e x ) ′ = e x (e^x)^ {'} = e^x (ex)′=ex
- ( log a x ) ′ = 1 x ln a (\log _a^x)^ {'} = \frac{1}{x\ln a} (logax)′=xlna1
- ( ln ∣ x ∣ ) ′ = 1 x (\ln |x|)^ {'} = \frac{1}{x} (ln∣x∣)′=x1
- ( sin x ) ′ = cos x (\sin x)^ {'} = \cos x (sinx)′=cosx
- ( cos x ) ′ = − sin x (\cos x)^ {'} = -\sin x (cosx)′=−sinx
- ( tan x ) ′ = sec 2 x (\tan x)^ {'} = \sec^2x (tanx)′=sec2x
- ( cot x ) ′ = − csc 2 x (\cot x)^ {'} = -\csc^2x (cotx)′=−csc2x
- ( sec x ) ′ = sec x tan x (\sec x)^ {'} = \sec x\tan x (secx)′=secxtanx
- ( csc x ) ′ = csc x cot x (\csc x)^ {'} = \csc x\cot x (cscx)′=cscxcotx
- ( arcsin x ) ′ = 1 1 − x 2 (\arcsin x)^ {'} = \frac{1}{\sqrt{1-x^2}} (arcsinx)′=1−x21
- ( arccos x ) ′ = − 1 1 − x 2 (\arccos x)^ {'} = -\frac{1}{\sqrt{1-x^2}} (arccosx)′=−1−x21
- ( arctan x ) ′ = 1 1 + x 2 (\arctan x)^ {'} = \frac{1}{1+x^2} (arctanx)′=1+x21
- ( a r c c o t x ) ′ = − 1 1 + x 2 (arccot x)^ {'} = -\frac{1}{1+x^2} (arccotx)′=−1+x21
六、常见奇偶性
奇函数
- f ( x ) = ln ( x + x 1 + x 2 ) f(x) = \ln{(x + \frac{x}{1+x^2})} f(x)=ln(x+1+x2x)