一、jvm的位置
从上边这幅图当中我们可以看的很清楚操作系统之所以能够让硬件运行起来,是因为各种硬件的驱动实现了操作系统的接口,操作系统调用这些接口就能管理硬件。操作系统还向程序员提供了一层接口,叫做系统呼叫层,程序员可以面向这一层的接口编程,来实现对计算机的控制。那么在我们java当中JVM负责翻译.class文件,从而调用不同操作系统上的函数,最终完成特定的功能。
二、JVM与操作系统
JVM和内存之间的关系
我们从上图当中可以看出我们的JVM的区域划分和我们的操作系统内存布局是一致的,或者说我们的jvm在一定出程度上模拟实现了操作系统内存布局。
1.首先我们来看一下操作系统的内存结构图
我们可以看到JVM内存是存放在操作系统的堆内存当中,操作系统的堆内存,是由我们程序员进行管理
2.细分JVM的内存
其实从这个图当中我们不难看出,JVM的设计模型其实就是操作系统的设计模型,对于操作系统而言,jvm就是一个应用,而对于class文件来说,JVM就是一个操作系统,JVM的方法区,相当于操作系统的硬盘区。而java栈和操作系统栈是一致的,无论是生长方向和管理方式都是一致的。至于堆虽然概念上一致目标也一致,分配内存的方式也一直(new,或者malloc等等),但是由于他们的管理方式不同,jvm是gc回收,而操作系统是程序员手动释放,所以在算法上有很多的差异,gc的回收算法,估计是jvm里面的经典啊,后面我们也会一点点的学习的,不要着急。
3.再来看我们下面的这一幅图
PC:指令计数器:这里面存储的是下一条指令的地址(指令存在我们的内存当中) Registers:寄存器:计算机从内存够当中拿到的数据存储在我们的寄存器当中。 ALU:算数逻辑单元:根据指令来计算数据,并将计算的结果放回到内存当中去。 cache:高速缓冲存取器:当我们去在内存当中去读取数据的时候我们会发现很慢,这个时候我们就会使用缓存
这是一张我们计算机的底层架构图,我们可以在这张图当中看到我们在JVM虚拟机当中加入了一个虚拟机pc寄存器,所谓pc寄存器,无论是在虚拟机中还是在我们虚拟机所寄宿的操作系统中功能目的是一致的,计算机上的pc寄存器是计算机上的硬件,本来就是属于计算机,(这一点对于学过汇编的同学应该很容易理解,有很多的寄存器eax,esp之类的32位寄存器,jvm里的寄存器就相当于汇编里的esp寄存器),计算机用pc寄存器来存放“伪指令”或地址,而相对于虚拟机,pc寄存器它表现为一块内存(一个字长,虚拟机要求字长最小为32位),虚拟机的pc寄存器的功能也是存放伪指令,更确切的说存放的是将要执行指令的地址,它甚至可以是操作系统指令的本地地址,当虚拟机正在执行的方法是一个本地方法的时候,jvm的pc寄存器存储的值是undefined,所以你现在应该很明确的知道,虚拟机的pc寄存器是用于存放下一条将要执行的指令的地址(字节码流)。
4.我们在进行扩展
多了什么?没错多了一个classLoader,其实这个图是要告诉你,当一个classLoder启动的时候,classLoader的生存地点在jvm中的堆,然后它会去主机硬盘上将A.class装载到jvm的方法区,方法区中的这个字节文件会被虚拟机拿来new A字节码(),然后在堆内存生成了一个A字节码的对象。
三、jvm区域的划分
java虚拟机在执行Java程序的过程中会把他管理的内存划分为若干不同的数据区域。这些区域都有各自的用途,以及创建和销毁时间,有的区域会随着虚拟机进程的启动而存在,有的区域则依赖用户线程的启动和结束而建立和销毁。根据《java虚拟机规范》的规定,java虚拟机管理的内存会包括以下几个运行时数据区域。
在这当中方法区和堆是线程共享的数据区,虚拟机栈,本地方法栈、程序计数器是线程隔离的数据区
1.程序计数器
程序计数器是一块比较小的内存空间,他可以看做是当前线程所执行字节码的行号指示器。在虚拟机的概念模型里,字节码解释器工作时就是通过改变这个计数器的值来选取下一条执行字节码指令。
由于java虚拟机的多线程是通过线程轮流切换并分配处理器执行时间的方式来实现的,在任何一个确定的时刻,一个处理器(对于多核处理器来说就是一个内核)都只会执行一条线程当中的指令。因此,为了切换后能够恢复到正确的执行位置,每个线程都需要一个独立的程序计数器,每个程序计数器之间互不影响,独立存储,我们称这类内存区域为“线程私有的内存”。
如果执行的是java方法,这个计数器记录的是正在执行的虚拟机字节码指令地址。如果是native方法,计数器为空。此内存区域是唯一一个在java虚拟机规范中没有规定任何OutOfMemoryError情况的区域。
2.虚拟机栈
java虚拟机栈是线程私有的,它的生命周期与线程相同(随线程而生,随线程而灭)
java虚拟机栈描述的是Java方法执行的内存模型:每个方法执行的同时会创建一个栈帧。对于我们来说,主要关注的stack栈内存,就是虚拟机栈中局部变量表部分。,如下如所示。
从上图当中我们可以看出栈帧是虚拟机进行方法调用和方法执行的数据结构。它是虚拟机运行时数据区当中的java虚拟机栈的栈元素。栈帧当中存储了方法的局部变量表、操作数栈、动态链接和方法返回地址等信息。每一个方法从调用开始至执行完成的过程,都对应着一个栈帧在虚拟机里面从入栈到出栈的过程。
在编译程序代码的时候,栈帧中需要多大的局部变量表内存,多深的操作数栈都已经完全确定了。 因此一个栈帧需要分配多少内存,不会受到程序运行期变量数据的影响,而仅仅取决于具体的虚拟机实现。
2.1局部变量表
1.局部变量表(Local Variable Table)是一组变量值存储空间,用于存放方法参数和方法内部定义的局部变量。并且在Java编译为Class文件时,就已经确定了该方法所需要分配的局部变量表的最大容量。
2.局部变量表存放了编译期可知的各种基本数据类型(boolean、byte、char、short、int、float、long、double)「String是引用类型」,对象引用(reference类型) 和 returnAddress类型(它指向了一条字节码指令的地址)
2.2操作栈
操作栈是个初始状态为空的桶式结构栈。在方法执行过程中, 会有各种指令往栈中写入和提取信息。JVM 的执行引擎是基于栈的执行引擎, 其中的栈指的就是操作栈。字节码指令集的定义都是基于栈类型的,栈的深度在方法元信息的 stack 属性中。
i++ 和 ++i 的区别:
i++:从局部变量表取出 i 并压入操作栈(load memory), 然后对局部变量表中的 i 自增 1(add&store memory),将操作栈栈顶值取出使用, 如此线程从操作栈读到的是自增之前的值。 ++i:先对局部变量表的 i 自增 1(load memory&add&store memory), 然后取出并压入操作栈(load memory),再将操作栈栈顶值取出使用, 线程从操作栈读到的是自增之后的值。
2.3reference(对象实例的引用)
我的理解是:一个超链接
一般来说,虚拟机都能从引用中直接或者间接的查找到对象的以下两点 :
a.在Java堆中的数据存放的起始地址索引。
b.所属数据类型在方法区中的存储类型。
例如:我们在创建一个Student对象时的数据存储结构:
2.4动态连接
每个栈帧都包含一个指向运行时常量池中该栈帧所属方法的引用,
持有这个引用是为了支持方法调用过程中的动态连接(Dynamic Linking)。
在类加载阶段中的解析阶段会将符号引用转为直接引用,这种转化也称为静态解析。
另外的一部分将在每一次运行时期转化为直接引用。这部分称为动态连接。
这里简单提一下动态连接的概念,后面在详细讲解.
2.57.方法出口
当一个方法开始执行后,只有2种方式可以退出这个方法 :
方法返回指令 : 执行引擎遇到一个方法返回的字节码指令,这时候有可能会有返回值传递给上层的方法调用者,这种退出方式称为正常完成出口。
异常退出 : 在方法执行过程中遇到了异常,并且没有处理这个异常,就会导致方法退出。
无论采用任何退出方式,在方法退出之后,都需要返回到方法被调用的位置,程序才能继续执行,方法返回时可能需要在栈帧中保存一些信息。
一般来说,方法正常退出时,调用者的PC计数器的值可以作为返回地址,栈帧中会保存这个计数器值。
而方法异常退出时,返回地址是要通过异常处理器表来确定的,栈帧中一般不会保存这部分信息。
3.本地方法栈
本地方法栈(Native Method Stack)与虚拟机栈所发挥的作用是非常相似的,它们之间的区别不过是虚拟机栈为虚拟机执行 Java 方法(也就是字节码)服务,而本地方法栈则为虚拟机使用到的 Native 方法服务。Sun HotSpot 虚拟机直接就把本地方法栈和虚拟机栈合二为一。与虚拟机栈一样,本地方法栈区域也会抛出 StackOverflowError 和 OutOfMemoryError 异常。
4.Java堆
对于大多数应用来说,Java 堆(Java Heap)是 Java 虚拟机所管理的内存中最大的一块。Java 堆是被所有线程共享的一块内存区域,在虚拟机启动时创建。此内存区域的唯一目的就是存放对象实例,几乎所有的对象实例都在这里分配内存。
堆是垃圾收集器管理的主要区域,因此很多时候也被称做“GC堆”(Garbage Collected Heap)。从内存回收的角度来看,由于现在收集器基本都采用分代收集算法,所以 Java 堆中还可以细分为:新生代和老年代;再细致一点的有 Eden 空间、From Survivor 空间、To Survivor 空间等。从内存分配的角度来看,线程共享的 Java 堆中可能划分出多个线程私有的分配缓冲区(Thread Local Allocation Buffer,TLAB)。
Java 堆可以处于物理上不连续的内存空间中,只要逻辑上是连续的即可,当前主流的虚拟机都是按照可扩展来实现的(通过 -Xmx 和 -Xms 控制)。如果在堆中没有内存完成实例分配,并且堆也无法再扩展时,将会抛出 OutOfMemoryError 异常。
5.方法区
方法区(Method Area)与 Java 堆一样,是各个线程共享的内存区域,它用于存储已被虚拟机加载的类信息、常量、静态变量、即时编译器编译后的代码等数据。虽然Java 虚拟机规范把方法区描述为堆的一个逻辑部分,但是它却有一个别名叫做 Non-Heap(非堆),目的应该是与 Java 堆区分开来。
Java 虚拟机规范对方法区的限制非常宽松,除了和 Java 堆一样不需要连续的内存和可以选择固定大小或者可扩展外,还可以选择不实现垃圾收集。垃圾收集行为在这个区域是比较少出现的,其内存回收目标主要是针对常量池的回收和对类型的卸载。当方法区无法满足内存分配需求时,将抛出 OutOfMemoryError 异常。
6.运行时常量池
运行时常量池(Runtime Constant Pool)是方法区的一部分。Class 文件中除了有类的版本、字段、方法、接口等描述信息外,还有一项信息是常量池(Constant Pool Table),用于存放编译期生成的各种字面量和符号引用,这部分内容将在类加载后进入方法区的运行时常量池中存放。
(这里要理解常量池和运行时常量池的区别,常量池是在class文件阶段,而运行时常量池则在运行时(RunTime)阶段).
一般来说,除了保存 Class 文件中描述的符号引用外,还会把翻译出来的直接引用也存储在运行时常量池中。
运行时常量池相对于 Class 文件常量池的另外一个重要特征是具备动态性,Java 语言并不要求常量一定只有编译期才能产生,也就是并非预置入 Class 文件中常量池的内容才能进入方法区运行时常量池,运行期间也可能将新的常量放入池中,这种特性被开发人员利用得比较多的便是 String 类的 intern() 方法。
既然运行时常量池是方法区的一部分,自然受到方法区内存的限制,当常量池无法再申请到内存时会抛出 OutOfMemoryError 异常。
7.直接内存
直接内存(Direct Memory)并不是虚拟机运行时数据区的一部分,也不是 Java 虚拟机规范中定义的内存区域。
在 JDK 1.4 中新加入了 NIO,引入了一种基于通道(Channel)与缓冲区(Buffer)的 I/O 方式,它可以使用 Native 函数库直接分配堆外内存,然后通过一个存储在 Java 堆中的 DirectByteBuffer 对象作为这块内存的引用进行操作。这样能在一些场景中显著提高性能,因为避免了在 Java 堆和 Native 堆中来回复制数据。
显然,本机直接内存的分配不会受到 Java 堆大小的限制,但是,既然是内存,肯定还是会受到本机总内存(包括 RAM 以及 SWAP 区或者分页文件)大小以及处理器寻址空间的限制。服务器管理员在配置虚拟机参数时,会根据实际内存设置 -Xmx 等参数信息,但经常忽略直接内存,使得各个内存区域总和大于物理内存限制(包括物理的和操作系统级的限制),从而导致动态扩展时出现 OutOfMemoryError 异常。
例如有32G内存,有4G被其他应用消耗,剩余的28G就是直接内存