【Prometheus】监控Kubernetes

发布于:2023-01-21 ⋅ 阅读:(594) ⋅ 点赞:(0)

Kubenetes是一款由Google开发的开源的容器编排工具,在Google已经使用超过15年。作为容器领域事实的标准,Kubernetes可以极大的简化应用的管理和部署复杂度。本章中,我们将介绍Kubernetes的一些基本概念,并且从0开始利用Prometheus构建一个完整的Kubernetes集群监控系统。同时我们还将学习如何通过Prometheus Operator简化在Kubernetes下部署和管理Promethues的过程。

初识Kubernetes

Kubenetes是一款由Google开发的开源的容器编排工具(GitHub源码),在Google已经使用超过15年(Kubernetest前身是Google的内部工具Borg)。Kubernetes将一系列的主机看做是一个受管理的海量资源,这些海量资源组成了一个能够方便进行扩展的操作系统。而在Kubernetes中运行着的容器则可以视为是这个操作系统中运行的“进程”,通过Kubernetes这一中央协调器,解决了基于容器应用程序的调度、伸缩、访问负载均衡以及整个系统的管理和监控的问题。

Kubernetes应用管理模型

下图展示了Kubernetes的应用管理模型:

Kubernetes应用管理模型

Pod是Kubernetes中的最小调度资源。Pod中会包含一组容器,它们一起工作,并且对外提供一个(或者一组)功能。对于这组容器而言它们共享相同的网络和存储资源,因此它们之间可以直接通过本地网络(127.0.0.1)进行访问。当Pod被创建时,调度器(kube-schedule)会从集群中找到满足条件的节点运行它。

如果部署应用程序时,需要启动多个实例(副本),则需要使用到控制器(Controller)。用户可以在Controller定义Pod的调度规则、运行的副本数量以及升级策略等等信息,当某些Pod发生故障之后,Controller会尝试自动修复,直到Pod的运行状态满足Controller中定义的预期状态为止。Kubernetes中提供了多种Controller的实现,包括:Deployment(无状态应用)、StatefulSet(有状态应用)、Daemonset(守护模式)等,以支持不同类型应用的部署和调度模式。

通过Controller和Pod我们定义了应用程序是如何运行的,接下来需要解决如何使用这些部署在Kubernetes集群中的应用。Kubernetes将这一问题划分为两个问题域,第一,集群内的应用如何通信。第二,外部的用户如何访问部署在集群内的应用?

对于第一个问题,在Kubernetes中通过定义Service(服务)来解决。Service在Kubernetes集群内扮演了服务发现和负载均衡的作用。在Kubernetes下部署的Pod实例都会包含一组描述自身信息的Lable,而创建Service,可以声明一个Selector(标签选择器)。Service通过Selector,找到匹配标签规则的Pod实例,并将对Service的请求转发到代理的Pod中。Service创建完成后,集群内的应用就可以通过使用Service的名称作为DNS域名进行相互访问。

而对于第二个问题,Kubernetes中定义了单独的资源Ingress(入口)。Ingress是一个工作在7层的负载均衡器,其负责代理外部进入集群内的请求,并将流量转发到对应的服务中。

最后,对于同一个Kubernetes集群其可能被多个组织使用,为了隔离这些不同组织创建的应用程序,Kubernetes定义了Namespace(命名空间)对资源进行隔离。

Kubernetes架构模型

为了能够更好的理解Kubernetes下的监控体系,我们需要了解Kubernetes的基本架构,如下所示,是Kubernetes的架构示意图:

Kubernetes架构

Kubernetes的核心组件主要由两部分组成:Master组件和Node组件,其中Matser组件提供了集群层面的管理功能,它们负责响应用户请求并且对集群资源进行统一的调度和管理。Node组件会运行在集群的所有节点上,它们负责管理和维护节点中运行的Pod,为Kubernetes集群提供运行时环境。

Master组件主要包括:

  • kube-apiserver:负责对外暴露Kubernetes API;
  • etcd:用于存储Kubernetes集群的所有数据;
  • kube-scheduler: 负责为新创建的Pod选择可供其运行的节点;
  • kube-controller-manager: 包含Node Controller,Deployment Controller,Endpoint Controller等等,通过与apiserver交互使相应的资源达到预期状态。

Node组件主要包括:

  • kubelet:负责维护和管理节点上Pod的运行状态;
  • kube-proxy:负责维护主机上的网络规则以及转发。
  • Container Runtime:如Docker,rkt,runc等提供容器运行时环境。

Kubernetes监控策略

Kubernetes作为开源的容器编排工具,为用户提供了一个可以统一调度,统一管理的云操作系统。其解决如用户应用程序如何运行的问题。而一旦在生产环境中大量基于Kubernetes部署和管理应用程序后,作为系统管理员,还需要充分了解应用程序以及Kubernetes集群服务运行质量如何,通过对应用以及集群运行状态数据的收集和分析,持续优化和改进,从而提供一个安全可靠的生产运行环境。 这一小节中我们将讨论当使用Kubernetes时的监控策略该如何设计。

从物理结构上讲Kubernetes主要用于整合和管理底层的基础设施资源,对外提供应用容器的自动化部署和管理能力,这些基础设施可能是物理机、虚拟机、云主机等等。因此,基础资源的使用直接影响当前集群的容量和应用的状态。在这部分,我们需要关注集群中各个节点的主机负载,CPU使用率、内存使用率、存储空间以及网络吞吐等监控指标。

从自身架构上讲,kube-apiserver是Kubernetes提供所有服务的入口,无论是外部的客户端还是集群内部的组件都直接与kube-apiserver进行通讯。因此,kube-apiserver的并发和吞吐量直接决定了集群性能的好坏。其次,对于外部用户而言,Kubernetes是否能够快速的完成pod的调度以及启动,是影响其使用体验的关键因素。而这个过程主要由kube-scheduler负责完成调度工作,而kubelet完成pod的创建和启动工作。因此在Kubernetes集群本身我们需要评价其自身的服务质量,主要关注在Kubernetes的API响应时间,以及Pod的启动时间等指标上。

Kubernetes的最终目标还是需要为业务服务,因此我们还需要能够监控应用容器的资源使用情况。对于内置了对Prometheus支持的应用程序,也要支持从这些应用程序中采集内部的监控指标。最后,结合黑盒监控模式,对集群中部署的服务进行探测,从而当应用发生故障后,能够快速处理和恢复。

综上所述,我们需要综合使用白盒监控和黑盒监控模式,建立从基础设施,Kubernetes核心组件,应用容器等全面的监控体系。

在白盒监控层面我们需要关注:

  • 基础设施层(Node):为整个集群和应用提供运行时资源,需要通过各节点的kubelet获取节点的基本状态,同时通过在节点上部署Node Exporter获取节点的资源使用情况;
  • 容器基础设施(Container):为应用提供运行时环境,Kubelet内置了对cAdvisor的支持,用户可以直接通过Kubelet组件获取给节点上容器相关监控指标;
  • 用户应用(Pod):Pod中会包含一组容器,它们一起工作,并且对外提供一个(或者一组)功能。如果用户部署的应用程序内置了对Prometheus的支持,那么我们还应该采集这些Pod暴露的监控指标;
  • Kubernetes组件:获取并监控Kubernetes核心组件的运行状态,确保平台自身的稳定运行。

而在黑盒监控层面,则主要需要关注以下:

  • 内部服务负载均衡(Service):在集群内,通过Service在集群暴露应用功能,集群内应用和应用之间访问时提供内部的负载均衡。通过Blackbox Exporter探测Service的可用性,确保当Service不可用时能够快速得到告警通知;
  • 外部访问入口(Ingress):通过Ingress提供集群外的访问入口,从而可以使外部客户端能够访问到部署在Kubernetes集群内的服务。因此也需要通过Blackbox Exporter对Ingress的可用性进行探测,确保外部用户能够正常访问集群内的功能;

搭建本地Kubernetes集群

为了能够更直观的了解和使用Kubernetes,我们将在本地通过工具Minikube(https://github.com/kubernetes/minikube)搭建一个本地的Kubernetes测试环境。Minikube会在本地通过虚拟机运行一个单节点的Kubernetes集群,可以方便用户或者开发人员在本地进行与Kubernetes相关的开发和测试工作。

安装MiniKube的方式很简单,对于Mac用户可以直接使用Brew进行安装:

brew cask install minikube

其它操作系统用户,可以查看Minikube项目的官方说明文档进行安装即可。安装完成后,在本机通过命令行启动Kubernetes集群:

$ minikube start
Starting local Kubernetes v1.7.5 cluster...
Starting VM...
SSH-ing files into VM...
Setting up certs...
Starting cluster components...
Connecting to cluster...
Setting up kubeconfig...
Kubectl is now configured to use the cluster.

MiniKube会自动配置本机的kubelet命令行工具,用于与对集群资源进行管理。同时Kubernetes也提供了一个Dashboard管理界面,在MiniKube下可以通过以下命令打开:

$ minikube dashboard
Opening kubernetes dashboard in default browser...

通过kubectl命令行工具,找到Dashboard对应的Service对外暴露的端口,如下所示,kubernetes-dashboard是一个NodePort类型的Service,并对外暴露了30000端口:

$ kubectl get service --namespace=kube-system
NAME                   TYPE        CLUSTER-IP       EXTERNAL-IP   PORT(S)         AGE
kube-dns               ClusterIP   10.96.0.10       <none>        53/UDP,53/TCP   131d
kubernetes-dashboard   NodePort    10.105.168.160   <none>        80:30000/TCP    131d

在Dashbord中,用户可以可视化的管理当前集群中运行的所有资源,以及监视其资源运行状态。

Kubernetes Dashboard

Kubernetes环境准备完成后,就可以开始尝试在Kubernetes下尝试部署一个应用程序。Kubernetes中管理的所有资源都可以通过YAML文件进行描述。如下所示,创建了一个名为nginx-deploymeht.yml文件:

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
  name: nginx-deployment
  labels:
    app: nginx
spec:
  replicas: 3
  selector:
    matchLabels:
      app: nginx
  template:
    metadata:
      labels:
        app: nginx
    spec:
      containers:
      - name: nginx
        image: nginx:1.7.9
        ports:
        - containerPort: 80

在该YAML文件中,我们定义了需要创建的资源类型为Deployment,在metadata中声明了该Deployment的名称以及标签。spec中则定义了该Deployment的具体设置,通过replicas定义了该Deployment创建后将会自动创建3个Pod实例。运行的Pod以及进行则通过template进行定义。

在命令行中使用,如下命令:

$ kubectl create -f nginx-deploymeht.yml
deployment "nginx-deployment" created

在未指定命名空间的情况下,kubectl默认关联default命名空间。由于这里没有指定Namespace,该Deployment将会在默认的命令空间default中创建。 通过kubectl get命令查看当前Deployment的部署进度:

# 查看Deployment的运行状态
$ kubectl get deployments
NAME               DESIRED   CURRENT   UP-TO-DATE   AVAILABLE   AGE
nginx-deployment   3         3         3            3           1m

# 查看运行的Pod实例
$ kubectl get pods
NAME                                READY     STATUS    RESTARTS   AGE
nginx-deployment-6d8f46cfb7-5f9qm   1/1       Running   0          1m
nginx-deployment-6d8f46cfb7-9ppb8   1/1       Running   0          1m
nginx-deployment-6d8f46cfb7-nfmsw   1/1       Running   0          1m

为了能够让用户或者其它服务能够访问到Nginx实例,这里通过一个名为nginx-service.yml的文件定义Service资源:

kind: Service
apiVersion: v1
metadata:
  name: nginx-service
spec:
  selector:
    app: nginx
  ports:
  - protocol: TCP
    port: 80
    targetPort: 80
  type: NodePort

默认情况下,Service资源只能通过集群网络进行访问(type=ClusterIP)。这里为了能够直接访问该Service,需要将容器端口映射到主机上,因此定义该Service类型为NodePort。

创建并查看Service资源:

$ kubectl create -f nginx-service.yml
service "nginx-service" created

$ kubectl get svc
NAME            TYPE        CLUSTER-IP       EXTERNAL-IP   PORT(S)        AGE
kubernetes      ClusterIP   10.96.0.1        <none>        443/TCP        131d
nginx-service   NodePort    10.104.103.112   <none>        80:32022/TCP   10s

通过nginx-server映射到虚拟机的32022端口,就可以直接访问到Nginx实例的80端口:

Nginx主页

部署完成后,如果需要对Nginx实例进行扩展,可以使用:

$ kubectl scale deployments/nginx-deployment --replicas=4
deployment "nginx-deployment" scaled

通过kubectl命令还可以对镜像进行滚动升级:

$ kubectl set image deployment/nginx-deployment nginx=nginx:1.9.1
deployment "nginx-deployment" image updated

$ kubectl get pods
NAME                                READY     STATUS              RESTARTS   AGE
nginx-deployment-58b94fcb9-8fjm6    0/1       ContainerCreating   0          52s
nginx-deployment-58b94fcb9-qzlwx    0/1       ContainerCreating   0          51s
nginx-deployment-6d8f46cfb7-5f9qm   1/1       Running             0          45m
nginx-deployment-6d8f46cfb7-7xs6z   0/1       Terminating         0          2m
nginx-deployment-6d8f46cfb7-9ppb8   1/1       Running             0          45m
nginx-deployment-6d8f46cfb7-nfmsw   1/1       Running             0          45m

如果升级后服务出现异常,那么可以通过以下命令对应用进行回滚:

$ kubectl rollout undo deployment/nginx-deployment
deployment "nginx-deployment"

Kubernetes依托于Google丰富的大规模应用管理经验。通过将集群环境抽象为一个统一调度和管理的云"操作系统,视容器为这个操作中独自运行的“进程”,进程间的隔离通过命名空间(Namespace)完成,实现了对应用生命周期管理从自动化到自主化的跨越。

部署Prometheus

使用ConfigMaps管理应用配置

当使用Deployment管理和部署应用程序时,用户可以方便了对应用进行扩容或者缩容,从而产生多个Pod实例。为了能够统一管理这些Pod的配置信息,在Kubernetes中可以使用ConfigMaps资源定义和管理这些配置,并且通过环境变量或者文件系统挂载的方式让容器使用这些配置。

这里将使用ConfigMaps管理Prometheus的配置文件,创建prometheus-config.yml文件,并写入以下内容:

apiVersion: v1
kind: ConfigMap
metadata:
  name: prometheus-config
data:
  prometheus.yml: |
    global:
      scrape_interval:     15s 
      evaluation_interval: 15s
    scrape_configs:
      - job_name: 'prometheus'
        static_configs:
        - targets: ['localhost:9090']

使用kubectl命令行工具,在命名空间default创建ConfigMap资源:

kubectl create -f prometheus-config.yml
configmap "prometheus-config" created

使用Deployment部署Prometheus

当ConfigMap资源创建成功后,我们就可以通过Volume挂载的方式,将Prometheus的配置文件挂载到容器中。 这里我们通过Deployment部署Prometheus Server实例,创建prometheus-deployment.yml文件,并写入以下内容:

apiVersion: apps/v1
kind: Deployment
metadata:
  labels:
    name: prometheus
  name: prometheus
spec:
  replicas: 1
  selector:
    matchLabels:
      app: prometheus
  template:
    metadata:
      labels:
        app: prometheus
    spec:
      containers:
        - name: prometheus
          image: prom/prometheus:v2.32.1
          command:
            - '/bin/prometheus'
          args:
            - '--config.file=/etc/prometheus/prometheus.yml'
            - '--storage.tsdb.path=/data'
          ports:
            - containerPort: 9090
              protocol: TCP
          volumeMounts:
            - mountPath: '/etc/prometheus'
              name: prometheus-config
            - mountPath: /data
              name: prometheus-data
            - mountPath: /etc/localtime
              name: localtime
      volumes:
        - hostPath:
            path: /usr/share/zoneinfo/Asia/Shanghai
          name: localtime
        - name: prometheus-config
          configMap:
            name: prometheus-config
        - name: prometheus-data
          persistentVolumeClaim:
            claimName: prometheus-pvc
            readOnly: false
---
apiVersion: v1
kind: 'Service'
metadata:
  name: prometheus
  labels:
    name: prometheus
spec:
  ports:
    - name: prometheus
      protocol: TCP
      port: 9090
      targetPort: 9090
  selector:
    app: prometheus
  type: ClusterIP

---
kind: Ingress
apiVersion: networking.k8s.io/v1
metadata:
  name: prometheus
  annotations:
    kubernetes.io/ingress.class: nginx
spec:
  rules:
    - host: xxx.xxx.top
      http:
        paths:
          - path: /
            pathType: Prefix
            backend:
              service:
                name: prometheus
                port:
                  number: 9090

该文件中分别定义了Service、Deployment、Ingress,,这样我们可以通过虚拟机Ingress访问到Prometheus实例。为了能够让Prometheus实例使用ConfigMap中管理的配置文件,这里通过volumes声明了一个磁盘卷。并且通过volumeMounts将该磁盘卷挂载到了Prometheus实例的/etc/prometheus目录下。

使用以下命令创建资源,并查看资源的创建情况:

$ kubectl create -f prometheus-deployment.yml
service "prometheus" created
deployment "prometheus" created

$ kubectl get pods
NAME                               READY     STATUS        RESTARTS   AGE
prometheus-55f655696d-wjqcl        1/1       Running       0          5s

$ kubectl get svc
NAME            TYPE        CLUSTER-IP       EXTERNAL-IP   PORT(S)          AGE
kubernetes      ClusterIP   10.96.0.1        <none>        443/TCP          131d
prometheus      NodePort    10.101.255.236   <none>        9090:32584/TCP   42s

至此,我们可以通过MiniKube虚拟机的IP地址和端口32584访问到Prometheus的服务。

Prometheus UI

Kubernetes下的服务发现

目前为止,我们已经能够在Kubernetes下部署一个简单的Prometheus实例,不过当前来说它并不能发挥其监控系统的作用,除了Prometheus,暂时没有任何的监控采集目标。在上一文我们介绍了Prometheus的服务发现能力,它能够与通过与“中间代理人“的交互,从而动态的获取需要监控的目标实例。而在Kubernetes下Prometheus就是需要与Kubernetes的API进行交互,从而能够动态的发现Kubernetes中部署的所有可监控的目标资源。

Kubernetes的访问授权

为了能够让Prometheus能够访问收到认证保护的Kubernetes API,我们首先需要做的是,对Prometheus进行访问授权。在Kubernetes中主要使用基于角色的访问控制模型(Role-Based Access Control),用于管理Kubernetes下资源访问权限。首先我们需要在Kubernetes下定义角色(ClusterRole),并且为该角色赋予相应的访问权限。同时创建Prometheus所使用的账号(ServiceAccount),最后则是将该账号与角色进行绑定(ClusterRoleBinding)。这些所有的操作在Kubernetes同样被视为是一系列的资源,可以通过YAML文件进行描述并创建,这里创建prometheus-rbac-setup.yml文件,并写入以下内容:

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: prometheus
rules:
  - apiGroups: [""]
    resources:
      - nodes
      - nodes/proxy
      - services
      - endpoints
      - pods
    verbs: ["get", "list", "watch"]
  - apiGroups:
      - extensions
    resources:
      - ingresses
    verbs: ["get", "list", "watch"]
  - nonResourceURLs: ["/metrics"]
    verbs: ["get"]
---
apiVersion: v1
kind: ServiceAccount
metadata:
  name: prometheus
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  name: prometheus
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: prometheus
subjects:
  - kind: ServiceAccount
    name: prometheus
    namespace: monitor

注意 namespace

其中需要注意的是ClusterRole是全局的,不需要指定命名空间。而ServiceAccount是属于特定命名空间的资源。通过kubectl命令创建RBAC对应的各个资源:

$ kubectl create -f prometheus-rbac-setup.yml
clusterrole "prometheus" created
serviceaccount "prometheus" created
clusterrolebinding "prometheus" created

在完成角色权限以及用户的绑定之后,就可以指定Prometheus使用特定的ServiceAccount创建Pod实例。修改prometheus-deployment.yml文件,并添加serviceAccountName和serviceAccount定义:

spec:
  replicas: 1
  template:
    metadata:
      labels:
        app: prometheus
    spec:
      serviceAccountName: prometheus
      serviceAccount: prometheus

通过kubectl apply对Deployment进行变更升级:

$ kubectl apply -f prometheus-deployment.yml
service "prometheus" configured
deployment "prometheus" configured

$ kubectl get pods
NAME                               READY     STATUS        RESTARTS   AGE
prometheus-55f655696d-wjqcl        0/1       Terminating   0          38m
prometheus-69f9ddb588-czn2c        1/1       Running       0          6s

指定ServiceAccount创建的Pod实例中,会自动将用于访问Kubernetes API的CA证书以及当前账户对应的访问令牌文件挂载到Pod实例的/var/run/secrets/kubernetes.io/serviceaccount/目录下,可以通过以下命令进行查看:

kubectl exec -it prometheus-69f9ddb588-czn2c ls /var/run/secrets/kubernetes.io/serviceaccount/
ca.crt     namespace  token

服务发现

在Kubernetes下,Promethues通过与Kubernetes API集成目前主要支持5种服务发现模式,分别是:Node、Service、Pod、Endpoints、Ingress。

通过kubectl命令行,可以方便的获取到当前集群中的所有节点信息:

$ kubectl get nodes -o wide
NAME       STATUS    ROLES     AGE       VERSION   EXTERNAL-IP   OS-IMAGE            KERNEL-VERSION   CONTAINER-RUNTIME
minikube   Ready     <none>    164d      v1.8.0    <none>        Buildroot 2017.02   4.9.13           docker://Unknown

为了能够让Prometheus能够获取到当前集群中所有节点的信息,在Promtheus的配置文件中,我们添加如下Job配置:

- job_name: 'kubernetes-nodes'
  tls_config:
    ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
  bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
  kubernetes_sd_configs:
  - role: node

通过指定kubernetes_sd_config的模式为node,Prometheus会自动从Kubernetes中发现到所有的node节点并作为当前Job监控的Target实例。如下所示,这里需要指定用于访问Kubernetes API的ca以及token文件路径。

对于Ingress,Service,Endpoints, Pod的使用方式也是类似的,下面给出了一个完整Prometheus配置的示例:

apiVersion: v1
data:
  prometheus.yml: |-
    global:
      scrape_interval:     15s 
      evaluation_interval: 15s
    scrape_configs:

    - job_name: 'kubernetes-nodes'
      tls_config:
        ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
      bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
      kubernetes_sd_configs:
      - role: node
      relabel_configs:
      - source_labels: [__address__]
        regex: '(.*):10250'
        replacement: '${1}:9100'
        target_label: __address__
        action: replace

    - job_name: 'kubernetes-service'
      tls_config:
        ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
      bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
      kubernetes_sd_configs:
      - role: service

    - job_name: 'kubernetes-endpoints'
      tls_config:
        ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
      bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
      kubernetes_sd_configs:
      - role: endpoints

    - job_name: 'kubernetes-ingress'
      tls_config:
        ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
      bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
      kubernetes_sd_configs:
      - role: ingress

    - job_name: 'kubernetes-pods'
      tls_config:
        ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
      bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
      kubernetes_sd_configs:
      - role: pod

kind: ConfigMap
metadata:
  name: prometheus-config

更新Prometheus配置文件,并重建Prometheus实例:

$ kubectl apply -f prometheus-config.yml
configmap "prometheus-config" configured

$ kubectl get pods
prometheus-69f9ddb588-rbrs2        1/1       Running   0          4m

$ kubectl delete pods prometheus-69f9ddb588-rbrs2
pod "prometheus-69f9ddb588-rbrs2" deleted

$ kubectl get pods
prometheus-69f9ddb588-rbrs2        0/1       Terminating   0          4m
prometheus-69f9ddb588-wtlsn        1/1       Running       0          14s

Prometheus使用新的配置文件重建之后,打开Prometheus UI,通过Service Discovery页面可以查看到当前Prometheus通过Kubernetes发现的所有资源对象了:

Service Discovery发现的实例

同时Prometheus会自动将该资源的所有信息,并通过标签的形式体现在Target对象上。如下所示,是Promthues获取到的Node节点的标签信息:

__address__="192.168.99.100:10250"
__meta_kubernetes_node_address_Hostname="minikube"
__meta_kubernetes_node_address_InternalIP="192.168.99.100"
__meta_kubernetes_node_annotation_alpha_kubernetes_io_provided_node_ip="192.168.99.100"
__meta_kubernetes_node_annotation_node_alpha_kubernetes_io_ttl="0"
__meta_kubernetes_node_annotation_volumes_kubernetes_io_controller_managed_attach_detach="true"
__meta_kubernetes_node_label_beta_kubernetes_io_arch="amd64"
__meta_kubernetes_node_label_beta_kubernetes_io_os="linux"
__meta_kubernetes_node_label_kubernetes_io_hostname="minikube"
__meta_kubernetes_node_name="minikube"
__metrics_path__="/metrics"
__scheme__="https"
instance="minikube"
job="kubernetes-nodes"

目前为止,我们已经能够通过Prometheus自动发现Kubernetes集群中的各类资源以及其基本信息。不过,如果现在查看Promtheus的Target状态页面,结果可能会让人不太满意:

Target页面状态

虽然Prometheus能够自动发现所有的资源对象,并且将其作为Target对象进行数据采集。 但并不是所有的资源对象都是支持Promethues的,并且不同类型资源对象的采集方式可能是不同的。因此,在实际的操作中,我们需要有明确的监控目标,并且针对不同类型的监控目标设置不同的数据采集方式。

监控Kubernetes集群

通过kubernetes_sd_config实现了对Kubernetes下各类资源的自动发现。在本小节中,我们将带领读者利用Promethues提供的服务发现能力,实现对Kubernetes集群以及其中部署的各类资源的自动化监控。

下表中,梳理了监控Kubernetes集群监控的各个维度以及策略:

目标 服务发现模式 监控方法 数据源
从集群各节点kubelet组件中获取节点kubelet的基本运行状态的监控指标 node 白盒监控 kubelet
从集群各节点kubelet内置的cAdvisor中获取,节点中运行的容器的监控指标 node 白盒监控 kubelet
从部署到各个节点的Node Exporter中采集主机资源相关的运行资源 node 白盒监控 node exporter
对于内置了Promthues支持的应用,需要从Pod实例中采集其自定义监控指标 pod 白盒监控 custom pod
获取API Server组件的访问地址,并从中获取Kubernetes集群相关的运行监控指标 endpoints 白盒监控 api server
获取集群中Service的访问地址,并通过Blackbox Exporter获取网络探测指标 service 黑盒监控 blackbox exporter
获取集群中Ingress的访问信息,并通过Blackbox Exporter获取网络探测指标 ingress 黑盒监控 blackbox exporter

从Kubelet获取节点Node运行状态

Kubelet组件运行在Kubernetes集群的各个节点中,其负责维护和管理节点上Pod的运行状态。kubelet组件的正常运行直接关系到该节点是否能够正常的被Kubernetes集群正常使用。

基于Node模式,Prometheus会自动发现Kubernetes中所有Node节点的信息并作为监控的目标Target。 而这些Target的访问地址实际上就是Kubelet的访问地址,并且Kubelet实际上直接内置了对Promtheus的支持。

修改prometheus.yml配置文件,并添加以下采集任务配置:

  - job_name: 'kubernetes-kubelet'
    scheme: https
    tls_config:
    ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
    bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
    kubernetes_sd_configs:
    - role: node
    relabel_configs:
    - action: labelmap
      regex: __meta_kubernetes_node_label_(.+)

这里使用Node模式自动发现集群中所有Kubelet作为监控的数据采集目标,同时通过labelmap步骤,将Node节点上的标签,作为样本的标签保存到时间序列当中

重新加载promethues配置文件,并重建Promthues的Pod实例后,查看kubernetes-kubelet任务采集状态,我们会看到以下错误提示信息:

Get https://192.168.99.100:10250/metrics: x509: cannot validate certificate for 192.168.99.100 because it doesn't contain any IP SANs

这是由于当前使用的ca证书中,并不包含192.168.99.100的地址信息。为了解决该问题,第一种方法是直接跳过ca证书校验过程,通过在tls_config中设置 insecure_skip_verify为true即可。 这样Promthues在采集样本数据时,将会自动跳过ca证书的校验过程,从而从kubelet采集到监控数据:

  - job_name: 'kubernetes-kubelet'
      scheme: https
      tls_config:
        ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
        insecure_skip_verify: true
      bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
      kubernetes_sd_configs:
      - role: node
      relabel_configs:
      - action: labelmap
        regex: __meta_kubernetes_node_label_(.+)

直接采集kubelet监控指标
第二种方式,不直接通过kubelet的metrics服务采集监控数据,而通过Kubernetes的api-server提供的代理API访问各个节点中kubelet的metrics服务,如下所示:

  - job_name: 'kubernetes-kubelet'
      scheme: https
      tls_config:
        ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
      bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
      kubernetes_sd_configs:
      - role: node
      relabel_configs:
      - action: labelmap
        regex: __meta_kubernetes_node_label_(.+)
      - target_label: __address__
        replacement: kubernetes.default.svc:443
      - source_labels: [__meta_kubernetes_node_name]
        regex: (.+)
        target_label: __metrics_path__
        replacement: /api/v1/nodes/${1}/proxy/metrics

通过relabeling,将从Kubernetes获取到的默认地址__address__替换为kubernetes.default.svc:443。同时将__metrics_path__替换为api-server的代理地址/api/v1/nodes/${1}/proxy/metrics。
通过api-server代理获取kubelet监控指标

通过获取各个节点中kubelet的监控指标,用户可以评估集群中各节点的性能表现。例如,通过指标kubelet_pod_start_latency_microseconds可以获得当前节点中Pod启动时间相关的统计数据。

kubelet_pod_start_latency_microseconds{quantile="0.99"}
99%的Pod启动时间

Pod平均启动时间大致为42s左右(包含镜像下载时间):

kubelet_pod_start_latency_microseconds_sum / kubelet_pod_start_latency_microseconds_count

Pod平均启动时间

除此以外,监控指标kubelet*docker**还可以体现出kubelet与当前节点的docker服务的调用情况,从而可以反映出docker本身是否会影响kubelet的性能表现等问题。

从Kubelet获取节点容器资源使用情况

各节点的kubelet组件中除了包含自身的监控指标信息以外,kubelet组件还内置了对cAdvisor的支持。cAdvisor能够获取当前节点上运行的所有容器的资源使用情况,通过访问kubelet的/metrics/cadvisor地址可以获取到cadvisor的监控指标,因此和获取kubelet监控指标类似,这里同样通过node模式自动发现所有的kubelet信息,并通过适当的relabel过程,修改监控采集任务的配置。 与采集kubelet自身监控指标相似,这里也有两种方式采集cadvisor中的监控指标:

方式一:直接访问kubelet的/metrics/cadvisor地址,需要跳过ca证书认证:

    - job_name: 'kubernetes-cadvisor'
      scheme: https
      tls_config:
        ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
        insecure_skip_verify: true
      bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
      kubernetes_sd_configs:
      - role: node
      relabel_configs:
      - source_labels: [__meta_kubernetes_node_name]
        regex: (.+)
        target_label: __metrics_path__
        replacement: metrics/cadvisor
      - action: labelmap
        regex: __meta_kubernetes_node_label_(.+)

直接访问kubelet
方式二:通过api-server提供的代理地址访问kubelet的/metrics/cadvisor地址:

    - job_name: 'kubernetes-cadvisor'
      scheme: https
      tls_config:
        ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
      bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
      kubernetes_sd_configs:
      - role: node
      relabel_configs:
      - target_label: __address__
        replacement: kubernetes.default.svc:443
      - source_labels: [__meta_kubernetes_node_name]
        regex: (.+)
        target_label: __metrics_path__
        replacement: /api/v1/nodes/${1}/proxy/metrics/cadvisor
      - action: labelmap
        regex: __meta_kubernetes_node_label_(.+)

使用api-server代理

使用NodeExporter监控集群资源使用情况

为了能够采集集群中各个节点的资源使用情况,我们需要在各节点中部署一个Node Exporter实例。在本章的“部署Prometheus”小节,我们使用了Kubernetes内置的控制器之一Deployment。Deployment能够确保Prometheus的Pod能够按照预期的状态在集群中运行,而Pod实例可能随机运行在任意节点上。而与Prometheus的部署不同的是,对于Node Exporter而言每个节点只需要运行一个唯一的实例,此时,就需要使用Kubernetes的另外一种控制器Daemonset。顾名思义,Daemonset的管理方式类似于操作系统中的守护进程。Daemonset会确保在集群中所有(也可以指定)节点上运行一个唯一的Pod实例。

创建node-exporter-daemonset.yml文件,并写入以下内容:

apiVersion: extensions/v1beta1
kind: DaemonSet
metadata:
  name: node-exporter
spec:
  selector:
    matchLabels:
      app: node-exporter
  template:
    metadata:
      annotations:
        prometheus.io/scrape: 'true'
        prometheus.io/port: '9100'
        prometheus.io/path: 'metrics'
      labels:
        app: node-exporter
      name: node-exporter
    spec:
      containers:
      - image: prom/node-exporter
        imagePullPolicy: IfNotPresent
        name: node-exporter
        ports:
        - containerPort: 9100
          hostPort: 9100
          name: scrape
      hostNetwork: true
      hostPID: true

由于Node Exporter需要能够访问宿主机,因此这里指定了hostNetwork和hostPID,让Pod实例能够以主机网络以及系统进程的形式运行。同时YAML文件中也创建了NodeExporter相应的Service。这样通过Service就可以访问到对应的NodeExporter实例。

$ kubectl create -f node-exporter-daemonset.yml
service "node-exporter" created
daemonset "node-exporter" created

查看Daemonset以及Pod的运行状态

$ kubectl get daemonsets
NAME            DESIRED   CURRENT   READY     UP-TO-DATE   AVAILABLE   NODE SELECTOR   AGE
node-exporter   1         1         1         1            1           <none>          15s

$ kubectl get pods
NAME                               READY     STATUS    RESTARTS   AGE
...
node-exporter-9h56z                1/1       Running   0          51s

由于Node Exporter是以主机网络的形式运行,因此直接访问MiniKube的虚拟机IP加上Pod的端口即可访问当前节点上运行的Node Exporter实例:

$ minikube ip
192.168.99.100

$ curl http://192.168.99.100:9100/metrics
...
process_start_time_seconds 1.5251401593e+09
# HELP process_virtual_memory_bytes Virtual memory size in bytes.
# TYPE process_virtual_memory_bytes gauge
process_virtual_memory_bytes 1.1984896e+08

目前为止,通过Daemonset的形式将Node Exporter部署到了集群中的各个节点中。接下来,我们只需要通过Prometheus的pod服务发现模式,找到当前集群中部署的Node Exporter实例即可。 需要注意的是,由于Kubernetes中并非所有的Pod都提供了对Prometheus的支持,有些可能只是一些简单的用户应用,为了区分哪些Pod实例是可以供Prometheus进行采集的,这里我们为Node Exporter添加了注解:

prometheus.io/scrape: 'true'

由于Kubernetes中Pod可能会包含多个容器,还需要用户通过注解指定用户提供监控指标的采集端口:

prometheus.io/port: '9100'

而有些情况下,Pod中的容器可能并没有使用默认的/metrics作为监控采集路径,因此还需要支持用户指定采集路径:

prometheus.io/path: 'metrics'

为Prometheus创建监控采集任务kubernetes-pods,如下所示:

  - job_name: 'kubernetes-pods'
    kubernetes_sd_configs:
    - role: pod
    relabel_configs:
    - source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_scrape]
      action: keep
      regex: true
    - source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_path]
      action: replace
      target_label: __metrics_path__
      regex: (.+)
    - source_labels: [__address__, __meta_kubernetes_pod_annotation_prometheus_io_port]
      action: replace
      regex: ([^:]+)(?::\d+)?;(\d+)
      replacement: $1:$2
      target_label: __address__
    - action: labelmap
      regex: __meta_kubernetes_pod_label_(.+)
    - source_labels: [__meta_kubernetes_namespace]
      action: replace
      target_label: kubernetes_namespace
    - source_labels: [__meta_kubernetes_pod_name]
      action: replace
      target_label: kubernetes_pod_name

通过Pod模式自动发现Node Exporter实例
通过以上relabel过程实现对Pod实例的过滤,以及采集任务地址替换,从而实现对特定Pod实例监控指标的采集。需要说明的是kubernetes-pods并不是只针对Node Exporter而言,对于用户任意部署的Pod实例,只要其提供了对Prometheus的支持,用户都可以通过为Pod添加注解的形式为其添加监控指标采集的支持。

从kube-apiserver获取集群运行监控指标

在开始正式内容之前,我们需要先了解一下Kubernetes中Service是如何实现负载均衡的,如下图所示,一般来说Service有两个主要的使用场景:
Service负载均衡

  • 代理对集群内部应用Pod实例的请求:当创建Service时如果指定了标签选择器,Kubernetes会监听集群中所有的Pod变化情况,通过Endpoints自动维护满足标签选择器的Pod实例的访问信息;
  • 代理对集群外部服务的请求:当创建Service时如果不指定任何的标签选择器,此时需要用户手动创建Service对应的Endpoint资源。例如,一般来说,为了确保数据的安全,我们通常讲数据库服务部署到集群外。 这是为了避免集群内的应用硬编码数据库的访问信息,这是就可以通过在集群内创建Service,并指向外部的数据库服务实例。

kube-apiserver扮演了整个Kubernetes集群管理的入口的角色,负责对外暴露Kubernetes API。kube-apiserver组件一般是独立部署在集群外的,为了能够让部署在集群内的应用(kubernetes插件或者用户应用)能够与kube-apiserver交互,Kubernetes会默认在命名空间下创建一个名为kubernetes的服务,如下所示:

$ kubectl get svc kubernetes -o wide
NAME                  TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)          AGE       SELECTOR
kubernetes            ClusterIP   10.96.0.1       <none>        443/TCP          166d      <none>

而该kubernetes服务代理的后端实际地址通过endpoints进行维护,如下所示:

$ kubectl get endpoints kubernetes
NAME         ENDPOINTS        AGE
kubernetes   10.0.2.15:8443   166d

通过这种方式集群内的应用或者系统主机就可以通过集群内部的DNS域名kubernetes.default.svc访问到部署外部的kube-apiserver实例。

因此,如果我们想要监控kube-apiserver相关的指标,只需要通过endpoints资源找到kubernetes对应的所有后端地址即可。

如下所示,创建监控任务kubernetes-apiservers,这里指定了服务发现模式为endpoints。Promtheus会查找当前集群中所有的endpoints配置,并通过relabel进行判断是否为apiserver对应的访问地址:

    - job_name: 'kubernetes-apiservers'
      kubernetes_sd_configs:
      - role: endpoints
      scheme: https
      tls_config:
        ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
      bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
      relabel_configs:
      - source_labels: [__meta_kubernetes_namespace, __meta_kubernetes_service_name, __meta_kubernetes_endpoint_port_name]
        action: keep
        regex: default;kubernetes;https
      - target_label: __address__
        replacement: kubernetes.default.svc:443

在relabel_configs配置中第一步用于判断当前endpoints是否为kube-apiserver对用的地址。第二步,替换监控采集地址到kubernetes.default.svc:443即可。重新加载配置文件,重建Promthues实例,得到以下结果。
apiserver任务状态

对Ingress和Service进行网络探测

为了能够对Ingress和Service进行探测,我们需要在集群部署Blackbox Exporter实例。 如下所示,创建blackbox-exporter.yaml用于描述部署相关的内容:

apiVersion: v1
kind: Service
metadata:
  labels:
    app: blackbox-exporter
  name: blackbox-exporter
spec:
  ports:
  - name: blackbox
    port: 9115
    protocol: TCP
  selector:
    app: blackbox-exporter
  type: ClusterIP
---
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
  labels:
    app: blackbox-exporter
  name: blackbox-exporter
spec:
  replicas: 1
  selector:
    matchLabels:
      app: blackbox-exporter
  template:
    metadata:
      labels:
        app: blackbox-exporter
    spec:
      containers:
      - image: prom/blackbox-exporter
        imagePullPolicy: IfNotPresent
        name: blackbox-exporter

通过kubectl命令部署Blackbox Exporter实例,这里将部署一个Blackbox Exporter的Pod实例,同时通过服务blackbox-exporter在集群内暴露访问地址blackbox-exporter.default.svc.cluster.local,对于集群内的任意服务都可以通过该内部DNS域名访问Blackbox Exporter实例:

$ kubectl get pods
NAME                                        READY     STATUS        RESTARTS   AGE
blackbox-exporter-f77fc78b6-72bl5           1/1       Running       0          4s

$ kubectl get svc
NAME                        TYPE        CLUSTER-IP       EXTERNAL-IP   PORT(S)          AGE
blackbox-exporter           ClusterIP   10.109.144.192   <none>        9115/TCP         3m

为了能够让Prometheus能够自动的对Service进行探测,我们需要通过服务发现自动找到所有的Service信息。 如下所示,在Prometheus的配置文件中添加名为kubernetes-services的监控采集任务:

    - job_name: 'kubernetes-services'
      metrics_path: /probe
      params:
        module: [http_2xx]
      kubernetes_sd_configs:
      - role: service
      relabel_configs:
      - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_probe]
        action: keep
        regex: true
      - source_labels: [__address__]
        target_label: __param_target
      - target_label: __address__
        replacement: blackbox-exporter.default.svc.cluster.local:9115
      - source_labels: [__param_target]
        target_label: instance
      - action: labelmap
        regex: __meta_kubernetes_service_label_(.+)
      - source_labels: [__meta_kubernetes_namespace]
        target_label: kubernetes_namespace
      - source_labels: [__meta_kubernetes_service_name]
        target_label: kubernetes_name

在该任务配置中,通过指定kubernetes_sd_config的role为service指定服务发现模式:

  kubernetes_sd_configs:
    - role: service

为了区分集群中需要进行探测的Service实例,我们通过标签‘prometheus.io/probe: true’进行判断,从而过滤出需要探测的所有Service实例:

      - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_probe]
        action: keep
        regex: true

并且将通过服务发现获取到的Service实例地址__address__转换为获取监控数据的请求参数。同时将__address执行Blackbox Exporter实例的访问地址,并且重写了标签instance的内容:

      - source_labels: [__address__]
        target_label: __param_target
      - target_label: __address__
        replacement: blackbox-exporter.default.svc.cluster.local:9115
      - source_labels: [__param_target]
        target_label: instance

最后,为监控样本添加了额外的标签信息:

      - action: labelmap
        regex: __meta_kubernetes_service_label_(.+)
      - source_labels: [__meta_kubernetes_namespace]
        target_label: kubernetes_namespace
      - source_labels: [__meta_kubernetes_service_name]
        target_label: kubernetes_name

对于Ingress而言,也是一个相对类似的过程,这里给出对Ingress探测的Promthues任务配置作为参考:

    - job_name: 'kubernetes-ingresses'
      metrics_path: /probe
      params:
        module: [http_2xx]
      kubernetes_sd_configs:
      - role: ingress
      relabel_configs:
      - source_labels: [__meta_kubernetes_ingress_annotation_prometheus_io_probe]
        action: keep
        regex: true
      - source_labels: [__meta_kubernetes_ingress_scheme,__address__,__meta_kubernetes_ingress_path]
        regex: (.+);(.+);(.+)
        replacement: ${1}://${2}${3}
        target_label: __param_target
      - target_label: __address__
        replacement: blackbox-exporter.default.svc.cluster.local:9115
      - source_labels: [__param_target]
        target_label: instance
      - action: labelmap
        regex: __meta_kubernetes_ingress_label_(.+)
      - source_labels: [__meta_kubernetes_namespace]
        target_label: kubernetes_namespace
      - source_labels: [__meta_kubernetes_ingress_name]
        target_label: kubernetes_name
本文含有隐藏内容,请 开通VIP 后查看

网站公告

今日签到

点亮在社区的每一天
去签到