【Vision Transformers-VIT】: 计算机视觉中的Transformer探索

发布于:2024-07-02 ⋅ 阅读:(11) ⋅ 点赞:(0)

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称 项目名称
1.【人脸识别与管理系统开发 2.【车牌识别与自动收费管理系统开发
3.【手势识别系统开发 4.【人脸面部活体检测系统开发
5.【图片风格快速迁移软件开发 6.【人脸表表情识别系统
7.【YOLOv8多目标识别与自动标注软件开发 8.【基于YOLOv8深度学习的行人跌倒检测系统
9.【基于YOLOv8深度学习的PCB板缺陷检测系统 10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统
11.【基于YOLOv8深度学习的安全帽目标检测系统 12.【基于YOLOv8深度学习的120种犬类检测与识别系统
13.【基于YOLOv8深度学习的路面坑洞检测系统 14.【基于YOLOv8深度学习的火焰烟雾检测系统
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统 16.【基于YOLOv8深度学习的舰船目标分类检测系统
17.【基于YOLOv8深度学习的西红柿成熟度检测系统 18.【基于YOLOv8深度学习的血细胞检测与计数系统
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统 20.【基于YOLOv8深度学习的水稻害虫检测与识别系统
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统 22.【基于YOLOv8深度学习的路面标志线检测与识别系统
23.【基于YOLOv8深度学习的智能小麦害虫检测识别系统 24.【基于YOLOv8深度学习的智能玉米害虫检测识别系统
25.【基于YOLOv8深度学习的200种鸟类智能检测与识别系统 26.【基于YOLOv8深度学习的45种交通标志智能检测与识别系统
27.【基于YOLOv8深度学习的人脸面部表情识别系统 28.【基于YOLOv8深度学习的苹果叶片病害智能诊断系统
29.【基于YOLOv8深度学习的智能肺炎诊断系统 30.【基于YOLOv8深度学习的葡萄簇目标检测系统
31.【基于YOLOv8深度学习的100种中草药智能识别系统 32.【基于YOLOv8深度学习的102种花卉智能识别系统
33.【基于YOLOv8深度学习的100种蝴蝶智能识别系统 34.【基于YOLOv8深度学习的水稻叶片病害智能诊断系统
35.【基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统 36.【基于YOLOv8深度学习的智能草莓病害检测与分割系统
37.【基于YOLOv8深度学习的复杂场景下船舶目标检测系统 38.【基于YOLOv8深度学习的农作物幼苗与杂草检测系统
39.【基于YOLOv8深度学习的智能道路裂缝检测与分析系统 40.【基于YOLOv8深度学习的葡萄病害智能诊断与防治系统
41.【基于YOLOv8深度学习的遥感地理空间物体检测系统 42.【基于YOLOv8深度学习的无人机视角地面物体检测系统
43.【基于YOLOv8深度学习的木薯病害智能诊断与防治系统 44.【基于YOLOv8深度学习的野外火焰烟雾检测系统
45.【基于YOLOv8深度学习的脑肿瘤智能检测系统 46.【基于YOLOv8深度学习的玉米叶片病害智能诊断与防治系统
47.【基于YOLOv8深度学习的橙子病害智能诊断与防治系统 48.【车辆检测追踪与流量计数系统
49.【行人检测追踪与双向流量计数系统 50.【基于YOLOv8深度学习的反光衣检测与预警系统
51.【危险区域人员闯入检测与报警系统 52.【高压输电线绝缘子缺陷智能检测系统

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
五、YOLOv8改进专栏【链接】持续更新中~~
六、YOLO性能对比专栏【链接】,持续更新中~

《------正文------》

介绍

Transformer 模型极大地推动了人工智能领域的发展,尤其是在自然语言处理 (NLP) 和计算机视觉领域。使 transformer 如此强大的关键特征之一是它们的注意力机制,它允许模型专注于输入数据的不同部分。

这种机制在Vision Transformers(ViT) 中尤为重要,该VIT在 An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale(Dosovitskiy 等人,2021 年)中介绍,它将Transformer架构应用于图像数据。

在这篇文章中,我们将深入探讨如何量化和可视化注意力,重点关注 ViT 模型,并演示如何生成和解释注意力地图。

ViT 模型:基于 Transformer 的计算机视觉架构

我们讨论的具体模型是 google/vit-large-patch32-384 ,它在 ImageNet-21k 上进行了预训练,并在 ImageNet 2012 上进行了微调。该模型具有:

  • 分辨率:224x224(预训练)和 384x384(微调)
  • 层数:24 层,每层有 16 个关注头
  • Tokens:145(包括CLS-Tokens)

生成注意力热力图

注意力热力图有助于可视化模型聚焦的图像的哪些部分。层中的每个注意力头都学习tokens关系的不同方面。该过程包括:

  1. 通过模型管道推理图像
  2. 聚合注意力映射
  3. 平滑地图并将其应用于原始图像

配置 ViT 模型

为了能够从模型的推理中提取注意力数据,在加载预训练(和微调)模型时,在通过图像之前需要进行一些配置:

from transformers import ViTForImageClassification, ViTImageProcessor

# Load a pre-trained ViT model and feature extractor
model_name = 'google/vit-large-patch32-384'
processor = ViTImageProcessor.from_pretrained(model_name, do_rescale=False)
model = ViTForImageClassification.from_pretrained(model_name, attn_implementation='eager')

# Run an image through the pipline
inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs, output_attentions=True)

# Getting the attentions
attentions = outputs.attentions 

原始注意力

在汇总所有 24 层的总分类注意力之前,我们可以绘制单层 16 个注意力图像(作为标记的数量;145X145),让我们看一下最后一层,例如:

img

单层 16 张注意力图像 (16X145X145)

ig, axs = plt.subplots(4, 4, figsize=(20, 20))
for i, ax in enumerate(axs.flatten()):
    ax.imshow(attentions[-1][0, i, :, :].detach().cpu().numpy())
    ax.axis('off')

滚动注意力

滚动注意力聚合跨多个图层的注意力地图,提供跨所有图层的图像焦点的全面视图。该技术突出显示了最相关的区域,提供了一种视觉解释形式,并使模型的内部工作更易于解释。

根据Abnar&Zuidema(2020)的工作,transformers中的注意力流可以量化。数学过程包括以下步骤:

img

代码如下:

def attention_rollout(attentions):
    # Initialize rollout with identity matrix
    rollout = torch.eye(attentions[0].size(-1)).to(attentions[0].device)

    # Multiply attention maps layer by layer
    for attention in attentions:
        attention_heads_fused = attention.mean(dim=1) # Average attention across heads
        attention_heads_fused += torch.eye(attention_heads_fused.size(-1)).to(attention_heads_fused.device) # A + I
        attention_heads_fused /= attention_heads_fused.sum(dim=-1, keepdim=True) # Normalizing A
        rollout = torch.matmul(rollout, attention_heads_fused) # Multiplication

    return rollout

这个简单的过程借鉴了基于Transformers的NLP任务模型评估,使我们能够聚合所有层的注意力,保留每个标记(视觉中的图像补丁)为任务传达的信息。

示例和视觉演示

以下是一些示例,展示了注意力图如何突出显示重要的图像区域,从而增强了转换器模型在视觉任务中的可解释性。

使用这个推出过程,我们能够在原始输入之上生成一个注意力布局:

img

输入和生成的注意力热力图,这是通过将分类标记的注意力向量扩展到 12X12 矩阵中来实现的。

cls_attention = rollout[0, 1:, 0]  # Get attention values from [CLS] token to all patches
cls_attention = 1 - cls_attention.reshape(int(np.sqrt(num_of_patches)), int(np.sqrt(num_of_patches)))

img

classifaciton tokens的 12X12 原始注意力热力图。

在应用Geussion Filter并重塑后,我们得到了要叠加的最终图像如下:

# Normalize the attention map for better visualization
cls_attention = (cls_attention - cls_attention.min()) / (cls_attention.max() - cls_attention.min())

# Resize and blur the attention map
cls_attention_resized = Image.fromarray((cls_attention * 255).astype(np.uint8)).resize((img_size, img_size), resample=Image.BICUBIC)
cls_attention_resized = cls_attention_resized.filter(ImageFilter.GaussianBlur(radius=2))

img

操作后的注意力图

最后,应用灰度注意力叠加的变换:

# Convert the attention map to RGBA
cls_attention_colored = np.array(cls_attention_resized.convert("L"))
cls_attention_colored = np.stack([cls_attention_colored]*3 + [cls_attention_colored], axis=-1)

# Adjust the alpha channel to control brightness
cls_attention_colored_img = Image.fromarray(cls_attention_colored, mode="RGBA")
cls_attention_colored_img.putalpha(100)  # Adjust alpha for blending (lower value for darker overlay)

生成的地图:

img

灰度注意力地图

总结

在图像分类任务领域,描绘注意力图像具有显着优势。

这些图像突出显示了图像中与特定任务最相关的区域,从而对影响模型决策的关键区域进行了重点分析。此功能充当视觉解释的一种形式,使模型的内部工作更易于解释。

通过揭示模型认为重要的图像部分,注意力地图增强了透明度和可信度,使用户能够更有效地理解和验证模型的预测。

在这个特定示例中,模型似乎在耳朵和脸上有更多的重点来确定这是一只狗。

img


好了,这篇文章就介绍到这里,感谢点赞关注,更多精彩内容持续更新中~

关注文末名片G-Z-H:【阿旭算法与机器学习】,可获取更多干货学习资源