决策树(DecisionTree)

发布于:2025-04-06 ⋅ 阅读:(20) ⋅ 点赞:(0)
# -*- coding: UTF-8 -*-
import matplotlib
matplotlib.use('QtAgg')

import os
# 替换为实际的 Qt 插件目录
qt_plugin_path = 'f:/cv/.venv/Lib/site-packages/PyQt5/Qt5/plugins'
os.environ['QT_PLUGIN_PATH'] = qt_plugin_path


from matplotlib.font_manager import FontProperties
import matplotlib.pyplot as plt
from math import log
import operator



def createDataSet():
	dataSet = [[0, 0, 0, 0, 'no'],						
			[0, 0, 0, 1, 'no'],
			[0, 1, 0, 1, 'yes'],
			[0, 1, 1, 0, 'yes'],
			[0, 0, 0, 0, 'no'],
			[1, 0, 0, 0, 'no'],
			[1, 0, 0, 1, 'no'],
			[1, 1, 1, 1, 'yes'],
			[1, 0, 1, 2, 'yes'],
			[1, 0, 1, 2, 'yes'],
			[2, 0, 1, 2, 'yes'],
			[2, 0, 1, 1, 'yes'],
			[2, 1, 0, 1, 'yes'],
			[2, 1, 0, 2, 'yes'],
			[2, 0, 0, 0, 'no']]
	labels = ['F1-AGE', 'F2-WORK', 'F3-HOME', 'F4-LOAN']		
	return dataSet, labels


def createTree(dataset,labels,featLabels):
	classList = [example[-1] for example in dataset]
	if classList.count(classList[0]) == len(classList):
		return classList[0]
	if len(dataset[0]) == 1:
		return majorityCnt(classList)
	bestFeat = chooseBestFeatureToSplit(dataset)
	bestFeatLabel = labels[bestFeat]
	featLabels.append(bestFeatLabel)
	myTree = {bestFeatLabel:{}}
	del labels[bestFeat]
	featValue = [example[bestFeat] for example in dataset]
	uniqueVals = set(featValue)
	for value in uniqueVals:
		sublabels = labels[:]
		myTree[bestFeatLabel][value] = createTree(splitDataSet(dataset,bestFeat,value),sublabels,featLabels)
	return myTree

def majorityCnt(classList):
	classCount={}
	for vote in classList:
		if vote not in classCount.keys():classCount[vote] = 0
		classCount[vote] += 1
	sortedclassCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
	return sortedclassCount[0][0]

def chooseBestFeatureToSplit(dataset):
	numFeatures = len(dataset[0]) - 1
	baseEntropy = calcShannonEnt(dataset)
	bestInfoGain = 0
	bestFeature = -1
	for i in range(numFeatures):
		featList = [example[i] for example in dataset]
		uniqueVals = set(featList)
		newEntropy = 0
		for val in uniqueVals:
			subDataSet = splitDataSet(dataset,i,val)
			prob = len(subDataSet)/float(len(dataset))
			newEntropy += prob * calcShannonEnt(subDataSet)
		infoGain = baseEntropy - newEntropy
		if (infoGain > bestInfoGain):
			bestInfoGain = infoGain
			bestFeature = i	
	return bestFeature
			
			
#FontProperties			
			
			
		
def splitDataSet(dataset,axis,val):
	retDataSet = []
	for featVec in dataset:
		if featVec[axis] == val:
			reducedFeatVec = featVec[:axis]
			reducedFeatVec.extend(featVec[axis+1:])
			retDataSet.append(reducedFeatVec)
	return retDataSet
			
def calcShannonEnt(dataset):
	numexamples = len(dataset)
	labelCounts = {}
	for featVec in dataset:
		currentlabel = featVec[-1]
		if currentlabel not in labelCounts.keys():
			labelCounts[currentlabel] = 0
		labelCounts[currentlabel] += 1
		
	shannonEnt = 0
	for key in labelCounts:
		prop = float(labelCounts[key])/numexamples
		shannonEnt -= prop*log(prop,2)
	return shannonEnt



def getNumLeafs(myTree):
    numLeafs = 0                                                
    firstStr = next(iter(myTree))                                
    secondDict = myTree[firstStr]                                
    for key in secondDict.keys():
        if type(secondDict[key]).__name__=='dict':
            numLeafs += getNumLeafs(secondDict[key])
        # 修正缩进,统一为 4 个空格
        else:
            numLeafs += 1
    return numLeafs



def getTreeDepth(myTree):
    maxDepth = 0                                                
    firstStr = next(iter(myTree))                                
    secondDict = myTree[firstStr]                                
    for key in secondDict.keys():
        if type(secondDict[key]).__name__ == 'dict':                
            thisDepth = 1 + getTreeDepth(secondDict[key])
        else:
            # 当不是字典时,当前深度为 1
            thisDepth = 1
        if thisDepth > maxDepth:
            maxDepth = thisDepth            
    return maxDepth



def plotNode(nodeTxt, centerPt, parentPt, nodeType):
    arrow_args = dict(arrowstyle="<-")
    font = FontProperties(fname=r"c:\windows\fonts\simsunb.ttf", size=14)
    # 修正缩进和重复代码
    createPlot.ax1.annotate(nodeTxt, xy=parentPt,  xycoords='axes fraction',
                            xytext=centerPt, textcoords='axes fraction',
                            va="center", ha="center", bbox=nodeType, arrowprops=arrow_args, fontproperties=font)

def plotMidText(cntrPt, parentPt, txtString):
    xMid = (parentPt[0]-cntrPt[0])/2.0 + cntrPt[0]
    yMid = (parentPt[1]-cntrPt[1])/2.0 + cntrPt[1]
    createPlot.ax1.text(xMid, yMid, txtString, va="center", ha="center", rotation=30)

# ... existing code ...

def plotTree(myTree, parentPt, nodeTxt):
	decisionNode = dict(boxstyle="sawtooth", fc="0.8")										
	leafNode = dict(boxstyle="round4", fc="0.8")											
	numLeafs = getNumLeafs(myTree)  														
	depth = getTreeDepth(myTree)															
	firstStr = next(iter(myTree))																								
	cntrPt = (plotTree.xOff + (1.0 + float(numLeafs))/2.0/plotTree.totalW, plotTree.yOff)	
	plotMidText(cntrPt, parentPt, nodeTxt)													
	plotNode(firstStr, cntrPt, parentPt, decisionNode)										
	secondDict = myTree[firstStr]															
	plotTree.yOff = plotTree.yOff - 1.0/plotTree.totalD										
	for key in secondDict.keys():								
		if type(secondDict[key]).__name__=='dict':											
			plotTree(secondDict[key],cntrPt,str(key))        								
		else:																														
			plotTree.xOff = plotTree.xOff + 1.0/plotTree.totalW
			plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)
			plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))
	plotTree.yOff = plotTree.yOff + 1.0/plotTree.totalD


def createPlot(inTree):
	fig = plt.figure(1, facecolor='white')													#创建fig
	fig.clf()																				#清空fig
	axprops = dict(xticks=[], yticks=[])
	createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)    							#去掉x、y轴
	plotTree.totalW = float(getNumLeafs(inTree))											#获取决策树叶结点数目
	plotTree.totalD = float(getTreeDepth(inTree))											#获取决策树层数
	plotTree.xOff = -0.5/plotTree.totalW; plotTree.yOff = 1.0;								#x偏移
	plotTree(inTree, (0.5,1.0), '')															#绘制决策树
	plt.show()




if __name__ == '__main__':
	dataset, labels = createDataSet()
	featLabels = []
	myTree = createTree(dataset,labels,featLabels)
	createPlot(myTree)
	

代码主要实现了一个决策树的创建和可视化功能。下面我将逐段对代码进行解读。

1. 导入必要的库

# -*- coding: UTF-8 -*-
import matplotlib
matplotlib.use('QtAgg')

import os
# 替换为实际的 Qt 插件目录
qt_plugin_path = 'f:/cv/.venv/Lib/site-packages/PyQt5/Qt5/plugins'
os.environ['QT_PLUGIN_PATH'] = qt_plugin_path


from matplotlib.font_manager import FontProperties
import matplotlib.pyplot as plt
from math import log
import operator

  • 设定编码为 UTF - 8。
  • 导入 matplotlib 库,并且指定使用 QtAgg 后端。
  • 设置 QT_PLUGIN_PATH 环境变量,以此保证 Qt 插件能正常加载。
  • 导入其他必要的库,像 matplotlib 的字体管理、绘图功能,math 库的对数函数,以及 operator 库的操作符。

2. 创建数据集

def createDataSet():
    dataSet = [[0, 0, 0, 0, 'no'],
               [0, 0, 0, 1, 'no'],
               [0, 1, 0, 1, 'yes'],
               [0, 1, 1, 0, 'yes'],
               [0, 0, 0, 0, 'no'],
               [1, 0, 0, 0, 'no'],
               [1, 0, 0, 1, 'no'],
               [1, 1, 1, 1, 'yes'],
               [1, 0, 1, 2, 'yes'],
               [1, 0, 1, 2, 'yes'],
               [2, 0, 1, 2, 'yes'],
               [2, 0, 1, 1, 'yes'],
               [2, 1, 0, 1, 'yes'],
               [2, 1, 0, 2, 'yes'],
               [2, 0, 0, 0, 'no']]
    labels = ['F1-AGE', 'F2-WORK', 'F3-HOME', 'F4-LOAN']
    return dataSet, labels

  • createDataSet 函数用于创建一个数据集,数据集由多个样本构成,每个样本包含若干特征和一个类别标签。
  • labels 列表给出了每个特征的名称。

3. 创建决策树

def createTree(dataset, labels, featLabels):
    classList = [example[-1] for example in dataset]
    if classList.count(classList[0]) == len(classList):
        return classList[0]
    if len(dataset[0]) == 1:
        return majorityCnt(classList)
    bestFeat = chooseBestFeatureToSplit(dataset)
    bestFeatLabel = labels[bestFeat]
    featLabels.append(bestFeatLabel)
    myTree = {bestFeatLabel: {}}
    del labels[bestFeat]
    featValue = [example[bestFeat] for example in dataset]
    uniqueVals = set(featValue)
    for value in uniqueVals:
        sublabels = labels[:]
        myTree[bestFeatLabel][value] = createTree(splitDataSet(dataset, bestFeat, value), sublabels, featLabels)
    return myTree

  • createTree 函数采用递归方式构建决策树。
  • 若数据集中所有样本的类别标签相同,就返回该类别标签。
  • 若数据集中只剩下类别标签,就调用 majorityCnt 函数返回出现次数最多的类别标签。
  • 调用 chooseBestFeatureToSplit 函数选取最优特征,依据该特征的不同取值划分数据集,然后递归构建子树。

4. 多数表决函数

def majorityCnt(classList):
    classCount = {}
    for vote in classList:
        if vote not in classCount.keys():
            classCount[vote] = 0
        classCount[vote] += 1
    sortedclassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)
    return sortedclassCount[0][0]

  • majorityCnt 函数用于统计类别标签的出现次数,返回出现次数最多的类别标签。

5. 选择最优特征

def chooseBestFeatureToSplit(dataset):
    numFeatures = len(dataset[0]) - 1
    baseEntropy = calcShannonEnt(dataset)
    bestInfoGain = 0
    bestFeature = -1
    for i in range(numFeatures):
        featList = [example[i] for example in dataset]
        uniqueVals = set(featList)
        newEntropy = 0
        for val in uniqueVals:
            subDataSet = splitDataSet(dataset, i, val)
            prob = len(subDataSet) / float(len(dataset))
            newEntropy += prob * calcShannonEnt(subDataSet)
        infoGain = baseEntropy - newEntropy
        if (infoGain > bestInfoGain):
            bestInfoGain = infoGain
            bestFeature = i
    return bestFeature

  • chooseBestFeatureToSplit 函数借助计算信息增益来选择最优特征。
  • 先计算数据集的基础熵 baseEntropy
  • 针对每个特征,计算其划分后的新熵 newEntropy,进而得到信息增益 infoGain
  • 返回信息增益最大的特征的索引。

6. 划分数据集

python

def splitDataSet(dataset, axis, val):
    retDataSet = []
    for featVec in dataset:
        if featVec[axis] == val:
            reducedFeatVec = featVec[:axis]
            reducedFeatVec.extend(featVec[axis + 1:])
            retDataSet.append(reducedFeatVec)
    return retDataSet

  • splitDataSet 函数依据指定特征和特征值划分数据集,返回划分后的子集。

7. 计算香农熵

python

def calcShannonEnt(dataset):
    numexamples = len(dataset)
    labelCounts = {}
    for featVec in dataset:
        currentlabel = featVec[-1]
        if currentlabel not in labelCounts.keys():
            labelCounts[currentlabel] = 0
        labelCounts[currentlabel] += 1

    shannonEnt = 0
    for key in labelCounts:
        prop = float(labelCounts[key]) / numexamples
        shannonEnt -= prop * log(prop, 2)
    return shannonEnt

  • calcShannonEnt 函数用于计算数据集的香农熵,反映数据集的混乱程度。

8. 计算决策树的叶子节点数和深度

python

def getNumLeafs(myTree):
    numLeafs = 0
    firstStr = next(iter(myTree))
    secondDict = myTree[firstStr]
    for key in secondDict.keys():
        if type(secondDict[key]).__name__ == 'dict':
            numLeafs += getNumLeafs(secondDict[key])
        else:
            numLeafs += 1
    return numLeafs


def getTreeDepth(myTree):
    maxDepth = 0
    firstStr = next(iter(myTree))
    secondDict = myTree[firstStr]
    for key in secondDict.keys():
        if type(secondDict[key]).__name__ == 'dict':
            thisDepth = 1 + getTreeDepth(secondDict[key])
        else:
            thisDepth = 1
        if thisDepth > maxDepth:
            maxDepth = thisDepth
    return maxDepth

  • getNumLeafs 函数递归计算决策树的叶子节点数。
  • getTreeDepth 函数递归计算决策树的深度。

9. 绘制节点和文本

python

def plotNode(nodeTxt, centerPt, parentPt, nodeType):
    arrow_args = dict(arrowstyle="<-")
    font = FontProperties(fname=r"c:\windows\fonts\simsunb.ttf", size=14)
    createPlot.ax1.annotate(nodeTxt, xy=parentPt, xycoords='axes fraction',
                            xytext=centerPt, textcoords='axes fraction',
                            va="center", ha="center", bbox=nodeType, arrowprops=arrow_args, fontproperties=font)


def plotMidText(cntrPt, parentPt, txtString):
    xMid = (parentPt[0] - cntrPt[0]) / 2.0 + cntrPt[0]
    yMid = (parentPt[1] - cntrPt[1]) / 2.0 + cntrPt[1]
    createPlot.ax1.text(xMid, yMid, txtString, va="center", ha="center", rotation=30)

  • plotNode 函数用于绘制决策树的节点。
  • plotMidText 函数用于在节点间绘制文本。

10. 绘制决策树

python

def plotTree(myTree, parentPt, nodeTxt):
    decisionNode = dict(boxstyle="sawtooth", fc="0.8")
    leafNode = dict(boxstyle="round4", fc="0.8")
    numLeafs = getNumLeafs(myTree)
    depth = getTreeDepth(myTree)
    firstStr = next(iter(myTree))
    cntrPt = (plotTree.xOff + (1.0 + float(numLeafs)) / 2.0 / plotTree.totalW, plotTree.yOff)
    plotMidText(cntrPt, parentPt, nodeTxt)
    plotNode(firstStr, cntrPt, parentPt, decisionNode)
    secondDict = myTree[firstStr]
    plotTree.yOff = plotTree.yOff - 1.0 / plotTree.totalD
    for key in secondDict.keys():
        if type(secondDict[key]).__name__ == 'dict':
            plotTree(secondDict[key], cntrPt, str(key))
        else:
            plotTree.xOff = plotTree.xOff + 1.0 / plotTree.totalW
            plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)
            plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))
    plotTree.yOff = plotTree.yOff + 1.0 / plotTree.totalD


def createPlot(inTree):
    fig = plt.figure(1, facecolor='white')
    fig.clf()
    axprops = dict(xticks=[], yticks=[])
    createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)
    plotTree.totalW = float(getNumLeafs(inTree))
    plotTree.totalD = float(getTreeDepth(inTree))
    plotTree.xOff = -0.5 / plotTree.totalW;
    plotTree.yOff = 1.0;
    plotTree(inTree, (0.5, 1.0), '')
    plt.show()

  • plotTree 函数递归绘制决策树。
  • createPlot 函数初始化绘图环境,调用 plotTree 函数绘制决策树,最后显示图形。

11. 主程序

python

if __name__ == '__main__':
    dataset, labels = createDataSet()
    featLabels = []
    myTree = createTree(dataset, labels, featLabels)
    createPlot(myTree)

  • 调用 createDataSet 函数创建数据集。
  • 调用 createTree 函数构建决策树。
  • 调用 createPlot 函数绘制并显示决策树。

总体而言,这段代码实现了决策树的构建和可视化,运用信息增益来选择最优特征,采用递归方法构建决策树,最后用 matplotlib 库将决策树可视化。