【图像算法 - 13】基于 YOLO12 与 OpenCV 的实时目标点击跟踪系统(系统介绍 + 源码详细)

发布于:2025-08-13 ⋅ 阅读:(21) ⋅ 点赞:(0)

基于 YOLO12 与 OpenCV 的实时点击目标跟踪系统

在计算机视觉领域,目标检测与跟踪是两个核心任务。本文将介绍一个结合 YOLO 目标检测模型与 OpenCV 跟踪算法的实时目标跟踪系统,该系统允许用户通过鼠标交互选择特定目标进行持续跟踪,支持多种跟踪算法切换,适用于视频监控、行为分析等场景。

【图像算法 - 13】基于 YOLO12 与 OpenCV 的实时目标点击跟踪系统

系统功能概述

该系统主要实现以下功能:

  • 使用 YOLO 模型对视频帧进行目标检测,识别出画面中的各类物体

  • 支持用户通过左键点击选择特定目标进行跟踪

  • 提供 MOSSE、CSRT、KCF 三种经典跟踪算法供选择

  • 实时显示跟踪状态、目标类别及 FPS 等信息

  • 支持右键点击停止跟踪,回到目标检测模式

点击跟踪

技术原理

系统采用 “检测 + 跟踪” 的混合架构:

  1. 首先利用 YOLO 模型进行目标检测,获取画面中所有目标的边界框和类别信息
  2. 当用户选择特定目标后,启动选定的跟踪算法对该目标进行持续跟踪
  3. 跟踪过程中实时更新目标位置,若跟踪失败则提示 “Lost”
  4. 整个过程通过可视化界面展示,支持用户交互操作

这种架构结合了 YOLO 检测精度高和传统跟踪算法速度快的优点,在保证一定精度的同时兼顾了实时性。

代码解析

核心依赖库

import cv2          # 用于视频处理和跟踪算法
import numpy as np  # 用于数值计算
import argparse     # 用于命令行参数解析
from ultralytics import YOLO  # 用于YOLO目标检测

全局变量与交互设计

定义全局变量存储跟踪状态和用户交互信息:

selected_box = None  # 选中的目标边界框
tracking = False     # 跟踪状态标志
target_class = None  # 目标类别
click_x, click_y = -1, -1  # 鼠标点击坐标
mouse_clicked = False      # 鼠标点击标志
debug = False              # 调试模式标志

鼠标回调函数处理用户交互:

def mouse_callback(event, x, y, flags, param):
    global click_x, click_y, mouse_clicked, tracking
    if event == cv2.EVENT_LBUTTONDOWN:  # 左键点击选择目标
        click_x, click_y = x, y
        mouse_clicked = True
        if debug:
            print(f"Left click at: ({x}, {y})")
    elif event == cv2.EVENT_RBUTTONDOWN:  # 右键点击停止跟踪
        tracking = False
        if debug:
            print("Tracking stopped")

跟踪器创建

针对不同的跟踪算法,创建对应的跟踪器实例(注意 OpenCV 新版本中跟踪器位于 legacy 模块):

def create_tracker(tracker_type):
    """使用cv2.legacy模块创建跟踪器,兼容新版OpenCV"""
    try:
        if tracker_type == "mosse":
            return cv2.legacy.TrackerMOSSE_create()
        elif tracker_type == "csrt":
            return cv2.legacy.TrackerCSRT_create()
        elif tracker_type == "kcf":
            return cv2.legacy.TrackerKCF_create()
        else:
            print(f"Unsupported tracker: {tracker_type}, using MOSSE")
            return cv2.legacy.TrackerMOSSE_create()
    except AttributeError as e:
        print(f"Failed to create tracker: {e}")
        print("Please check OpenCV installation (must include opencv-contrib-python)")
        return None
OpenCV 跟踪demo源码
#!/usr/bin/env python
'''
Tracker demo

For usage download models by following links
For GOTURN:
    goturn.prototxt and goturn.caffemodel: https://github.com/opencv/opencv_extra/tree/c4219d5eb3105ed8e634278fad312a1a8d2c182d/testdata/tracking
For DaSiamRPN:
    network:     https://www.dropbox.com/s/rr1lk9355vzolqv/dasiamrpn_model.onnx?dl=0
    kernel_r1:   https://www.dropbox.com/s/999cqx5zrfi7w4p/dasiamrpn_kernel_r1.onnx?dl=0
    kernel_cls1: https://www.dropbox.com/s/qvmtszx5h339a0w/dasiamrpn_kernel_cls1.onnx?dl=0
For NanoTrack:
    nanotrack_backbone: https://github.com/HonglinChu/SiamTrackers/blob/master/NanoTrack/models/nanotrackv2/nanotrack_backbone_sim.onnx
    nanotrack_headneck: https://github.com/HonglinChu/SiamTrackers/blob/master/NanoTrack/models/nanotrackv2/nanotrack_head_sim.onnx

USAGE:
    tracker.py [-h] [--input INPUT_VIDEO]
                    [--tracker_algo TRACKER_ALGO (mil, goturn, dasiamrpn, nanotrack, vittrack)]
                    [--goturn GOTURN_PROTOTXT]
                    [--goturn_model GOTURN_MODEL]
                    [--dasiamrpn_net DASIAMRPN_NET]
                    [--dasiamrpn_kernel_r1 DASIAMRPN_KERNEL_R1]
                    [--dasiamrpn_kernel_cls1 DASIAMRPN_KERNEL_CLS1]
                    [--nanotrack_backbone NANOTRACK_BACKBONE]
                    [--nanotrack_headneck NANOTRACK_TARGET]
                    [--vittrack_net VITTRACK_MODEL]
                    [--vittrack_net VITTRACK_MODEL]
                    [--tracking_score_threshold TRACKING SCORE THRESHOLD FOR ONLY VITTRACK]
                    [--backend CHOOSE ONE OF COMPUTATION BACKEND]
                    [--target CHOOSE ONE OF COMPUTATION TARGET]
'''

# Python 2/3 compatibility
from __future__ import print_function

import sys

import numpy as np
import cv2 as cv
import argparse

from video import create_capture, presets

backends = (cv.dnn.DNN_BACKEND_DEFAULT, cv.dnn.DNN_BACKEND_HALIDE, cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_BACKEND_OPENCV,
            cv.dnn.DNN_BACKEND_VKCOM, cv.dnn.DNN_BACKEND_CUDA)
targets = (cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_OPENCL, cv.dnn.DNN_TARGET_OPENCL_FP16, cv.dnn.DNN_TARGET_MYRIAD,
           cv.dnn.DNN_TARGET_VULKAN, cv.dnn.DNN_TARGET_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16)

class App(object):

    def __init__(self, args):
        self.args = args
        self.trackerAlgorithm = args.tracker_algo
        self.tracker = self.createTracker()

    def createTracker(self):
        if self.trackerAlgorithm == 'mil':
            tracker = cv.TrackerMIL_create()
        elif self.trackerAlgorithm == 'goturn':
            params = cv.TrackerGOTURN_Params()
            params.modelTxt = self.args.goturn
            params.modelBin = self.args.goturn_model
            tracker = cv.TrackerGOTURN_create(params)
        elif self.trackerAlgorithm == 'dasiamrpn':
            params = cv.TrackerDaSiamRPN_Params()
            params.model = self.args.dasiamrpn_net
            params.kernel_cls1 = self.args.dasiamrpn_kernel_cls1
            params.kernel_r1 = self.args.dasiamrpn_kernel_r1
            params.backend = args.backend
            params.target = args.target
            tracker = cv.TrackerDaSiamRPN_create(params)
        elif self.trackerAlgorithm == 'nanotrack':
            params = cv.TrackerNano_Params()
            params.backbone = args.nanotrack_backbone
            params.neckhead = args.nanotrack_headneck
            params.backend = args.backend
            params.target = args.target
            tracker = cv.TrackerNano_create(params)
        elif self.trackerAlgorithm == 'vittrack':
            params = cv.TrackerVit_Params()
            params.net = args.vittrack_net
            params.tracking_score_threshold = args.tracking_score_threshold
            params.backend = args.backend
            params.target = args.target
            tracker = cv.TrackerVit_create(params)
        else:
            sys.exit("Tracker {} is not recognized. Please use one of three available: mil, goturn, dasiamrpn, nanotrack.".format(self.trackerAlgorithm))
        return tracker

    def initializeTracker(self, image):
        while True:
            print('==> Select object ROI for tracker ...')
            bbox = cv.selectROI('tracking', image)
            print('ROI: {}'.format(bbox))
            if bbox[2] <= 0 or bbox[3] <= 0:
                sys.exit("ROI selection cancelled. Exiting...")

            try:
                self.tracker.init(image, bbox)
            except Exception as e:
                print('Unable to initialize tracker with requested bounding box. Is there any object?')
                print(e)
                print('Try again ...')
                continue

            return

    def run(self):
        videoPath = self.args.input
        print('Using video: {}'.format(videoPath))
        camera = create_capture(cv.samples.findFileOrKeep(videoPath), presets['cube'])
        if not camera.isOpened():
            sys.exit("Can't open video stream: {}".format(videoPath))

        ok, image = camera.read()
        if not ok:
            sys.exit("Can't read first frame")
        assert image is not None

        cv.namedWindow('tracking')
        self.initializeTracker(image)

        print("==> Tracking is started. Press 'SPACE' to re-initialize tracker or 'ESC' for exit...")

        while camera.isOpened():
            ok, image = camera.read()
            if not ok:
                print("Can't read frame")
                break

            ok, newbox = self.tracker.update(image)
            #print(ok, newbox)

            if ok:
                cv.rectangle(image, newbox, (200,0,0))

            cv.imshow("tracking", image)
            k = cv.waitKey(1)
            if k == 32:  # SPACE
                self.initializeTracker(image)
            if k == 27:  # ESC
                break

        print('Done')


if __name__ == '__main__':
    print(__doc__)
    parser = argparse.ArgumentParser(description="Run tracker")
    parser.add_argument("--input", type=str, default="vtest.avi", help="Path to video source")
    parser.add_argument("--tracker_algo", type=str, default="nanotrack", help="One of available tracking algorithms: mil, goturn, dasiamrpn, nanotrack, vittrack")
    parser.add_argument("--goturn", type=str, default="goturn.prototxt", help="Path to GOTURN architecture")
    parser.add_argument("--goturn_model", type=str, default="goturn.caffemodel", help="Path to GOTERN model")
    parser.add_argument("--dasiamrpn_net", type=str, default="dasiamrpn_model.onnx", help="Path to onnx model of DaSiamRPN net")
    parser.add_argument("--dasiamrpn_kernel_r1", type=str, default="dasiamrpn_kernel_r1.onnx", help="Path to onnx model of DaSiamRPN kernel_r1")
    parser.add_argument("--dasiamrpn_kernel_cls1", type=str, default="dasiamrpn_kernel_cls1.onnx", help="Path to onnx model of DaSiamRPN kernel_cls1")
    parser.add_argument("--nanotrack_backbone", type=str, default="nanotrack_backbone_sim.onnx", help="Path to onnx model of NanoTrack backBone")
    parser.add_argument("--nanotrack_headneck", type=str, default="nanotrack_head_sim.onnx", help="Path to onnx model of NanoTrack headNeck")
    parser.add_argument("--vittrack_net", type=str, default="vitTracker.onnx", help="Path to onnx model of  vittrack")
    parser.add_argument('--tracking_score_threshold', type=float,  help="Tracking score threshold. If a bbox of score >= 0.3, it is considered as found ")
    parser.add_argument('--backend', choices=backends, default=cv.dnn.DNN_BACKEND_DEFAULT, type=int,
                help="Choose one of computation backends: "
                        "%d: automatically (by default), "
                        "%d: Halide language (http://halide-lang.org/), "
                        "%d: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
                        "%d: OpenCV implementation, "
                        "%d: VKCOM, "
                        "%d: CUDA"% backends)
    parser.add_argument("--target", choices=targets, default=cv.dnn.DNN_TARGET_CPU, type=int,
                help="Choose one of target computation devices: "
                        '%d: CPU target (by default), '
                        '%d: OpenCL, '
                        '%d: OpenCL fp16 (half-float precision), '
                        '%d: VPU, '
                        '%d: VULKAN, '
                        '%d: CUDA, '
                        '%d: CUDA fp16 (half-float preprocess)'% targets)

    args = parser.parse_args()
    App(args).run()
    cv.destroyAllWindows()

目标检测与处理

使用 YOLO 模型进行目标检测,并将结果转换为便于处理的格式:

def detect_objects(frame, model, confidence):
    results = model(frame, conf=confidence)
    boxes = []  # 存储边界框 (x, y, w, h)
    class_names = []  # 存储目标类别
    for result in results:
        for box in result.boxes:
            x1, y1, x2, y2 = box.xyxy[0].tolist()
            boxes.append((int(x1), int(y1), int(x2 - x1), int(y2 - y1)))
            class_names.append(model.names[int(box.cls[0])])
    return boxes, class_names

判断鼠标点击是否在某个目标框内:

def point_in_box(x, y, box):
    bx, by, bw, bh = box
    return bx <= x <= bx + bw and by <= y <= by + bh

主程序逻辑

主函数协调整个系统的工作流程:

def main():
    global selected_box, tracking, target_class, mouse_clicked, debug

    args = parse_args()
    debug = args.debug

    # 验证跟踪器是否可用
    test_tracker = create_tracker(args.tracker)
    if test_tracker is None:
        return
    del test_tracker

    # 加载YOLO模型
    try:
        model = YOLO(args.model)
    except Exception as e:
        print(f"Failed to load YOLO model: {e}")
        return

    # 打开视频源
    cap = cv2.VideoCapture(args.video)
    if not cap.isOpened():
        print(f"Cannot open video source: {args.video}")
        return

    # 创建窗口和鼠标回调
    window_name = "Tracker"
    cv2.namedWindow(window_name)
    cv2.setMouseCallback(window_name, mouse_callback)

    tracker = None
    font = cv2.FONT_HERSHEY_SIMPLEX

    while True:
        ret, frame = cap.read()
        if not ret:
            print("End of video")
            break

        # 检测目标
        boxes, class_names = detect_objects(frame, model, args.confidence)

        # 处理点击选择目标
        if mouse_clicked and not tracking:
            for i, (box, cls) in enumerate(zip(boxes, class_names)):
                if point_in_box(click_x, click_y, box):
                    selected_box = box
                    target_class = cls
                    tracker = create_tracker(args.tracker)
                    if tracker:
                        tracker.init(frame, selected_box)
                        tracking = True
                        print(f"Tracking {target_class} with {args.tracker}")
                    break
            mouse_clicked = False

        # 跟踪逻辑
        if tracking and tracker:
            ok, bbox = tracker.update(frame)
            if ok:
                x, y, w, h = [int(v) for v in bbox]
                cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
                cv2.putText(frame, f"Track: {target_class}", (x, y - 10),
                            font, 0.5, (0, 255, 0), 2)
            else:
                cv2.putText(frame, "Lost", (10, 30), font, 0.7, (0, 0, 255), 2)
                tracking = False

        # 未跟踪时显示所有目标
        if not tracking:
            for box, cls in zip(boxes, class_names):
                x, y, w, h = box
                cv2.rectangle(frame, (x, y), (x + w, y + h), (255, 0, 0), 2)
                cv2.putText(frame, cls, (x, y - 10), font, 0.5, (255, 0, 0), 2)

        # 显示提示信息
        hint = "Right click to stop" if tracking else "Left click to select"
        cv2.putText(frame, hint, (10, 30), font, 0.7, (0, 255, 255), 2)
        cv2.putText(frame, f"Tracker: {args.tracker}", (10, frame.shape[0] - 30),
                    font, 0.5, (255, 255, 0), 2)
        cv2.putText(frame, f"FPS: {int(cap.get(cv2.CAP_PROP_FPS))}",
                    (10, frame.shape[0] - 10), font, 0.5, (255, 255, 0), 2)

        # 显示窗口
        cv2.imshow(window_name, frame)

        # 退出条件
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break

    cap.release()
    cv2.destroyAllWindows()

使用方法

环境配置

首先安装必要的依赖库:

pip install opencv-python opencv-contrib-python ultralytics numpy

运行参数

程序支持以下命令行参数:

  • --video:视频源路径,默认为 “xxxxx.mp4”,使用 “0” 可调用摄像头
  • --confidence:目标检测置信度阈值,默认 0.5
  • --model:YOLO 模型路径,默认 “yolo12n.pt”(会自动下载)
  • --tracker:跟踪算法选择,可选 “mosse”、“csrt”、“kcf”,默认 “mosse”
  • --debug:启用调试模式,打印额外信息

操作指南

  1. 运行程序后,系统默认处于目标检测模式,所有检测到的目标用蓝色框标记
  2. 左键点击某个目标框,系统将开始用绿色框跟踪该目标
  3. 右键点击可停止跟踪,回到目标检测模式
  4. 按 “q” 键退出程序

算法特性对比

三种跟踪算法各有特点:

  • MOSSE:速度最快,适合实时性要求高的场景,但精度相对较低
  • CSRT:精度最高,但速度较慢,适合对精度要求高的场景
  • KCF:介于前两者之间,平衡了速度和精度

根据实际应用场景选择合适的跟踪算法可以获得更好的效果。

总结与扩展

本文介绍的目标跟踪系统结合了 YOLO 的强检测能力和传统跟踪算法的高效性,通过简单的交互实现了灵活的目标跟踪功能。该系统可进一步扩展,例如:

  • 增加多目标跟踪功能
  • 结合 ReID(重识别)技术解决目标遮挡问题
  • 加入目标行为分析模块
  • 优化跟踪失败后的自动重新检测机制

通过这个系统,不仅可以快速实现实用的目标跟踪应用,也有助于理解目标检测与跟踪相结合的技术路线,为更复杂的计算机视觉系统开发奠定基础。